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Given a map with n regions we want to visualise
some data for each region.
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Options: Symbol map, Cartogram,
Spatial Treemap (Wood and Dykes 2008)
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One-to-one Point Set Matching Problem
Represent the regions by a set A blue points.

Represent the grid by a set B blue points.
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Represent the grid by a set B blue points.
Goal: find the best matching ¢ : A — B
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- Optimisation Criteria

What is the “best” matching?

® Minimise the total L; distance.

® Maximise the number of pairs with the
correct directional relation.

NE _NE
., | 9(a)
= ¢(a1) -




We want to find a matching ¢*, translation t*, and
scaling A* that minimise

- Minimising L;-distance

D(¢,t,A) =Y d(Xa+t ¢(a)).

acA




- Minimising L;-distance

We want to find a matching ¢* and translation t*
that minimise

Dr(¢.t) =) d(a+t,¢(a))

acA













- Aligning A and B decreases Dy

Lemma 1. For any matching ¢, there is a t
that x-aligns A and B and minimises D(®, -).




- Minimising Dy -

There Is an optimal matching at an x-alignment.

Same trick for y-alignment.
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- Minimising Dy -

There Is an optimal matching at an x-alignment.

Same trick for y-alignment.

here Is an optimal matching at an x- and
y-alignment.

— There are at most n* such alignments.

Theorem 1. A ¢* and t* that minimise D+ can be
computed in O(n* - n?log> n) = O(n®log> n) time.

Uses the matching algorithm by Vaidya (1988)




- Minimising Dx and D

Minimum distance matching under scaling?

Use exactly the same approach.
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Minimum distance matching under scaling?

Use exactly the same approach.

Minimum distance matching under translation and
scaling?

Same idea: x-align (y-align) two pairs of points.




- Minimising Dx and D

Minimum distance matching under scaling?

Use exactly the same approach.

Minimum distance matching under translation and
scaling?

Same idea: x-align (y-align) two pairs of points.

Theorem 2. A ¢*, t*, and \* that minimise D can
be computed in O(n® - n?log> n) = O(n'°log> n)

time.




- Preserving directional relations

NE o NE
'32 ¢(32)
37 Cb(al)




- Preserving directional relations

'32 ‘ ¢(32)
— ¢(a1)

Minimising the number of out-of-order pairs

W(¢) = {(a1, @) | (a1, 22) € AX AN
dir(ay, a2) # dir(¢(a1), #(a2))}|.




- Preserving directional relations

'32 ‘ ¢(32)
— ¢(a1)

Minimising the number of out-of-order pairs

W(¢) = {(a1, @) | (a1, 22) € AX AN
dir(ay, a2) # dir(¢(a1), #(a2))}|.

ranslation and scaling do not influence W'.




- A 4-approximation algorithm

Compute a minimum distance matching with
distance measure

w(a, b) = |x-ranks(a) — x-rankg(b)| +
y-ranks(a) — y-rankg(b)].
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w(a, b) is the L;-distance in terms of ranks.




- A 4-approximation algorithm

Compute a minimum distance matching with
distance measure

w(a, b) = |x-ranks(a) — x-rankg(b)| +
y-ranks(a) — y-rankg(b)].

w(a, b) is the L;-distance in terms of ranks.

So compute an optimal matching using
Vaidya's Algorithm.

Theorem 3. A 4-approximation for minimising W
can be computed in O(n?log> n).




- Inversions vs Directions
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x-ranku(ai) < x-ranks(a,) and
x-rankg(by) > x-rankg(b,)

(a1, a») is an inversion.
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(a1, a») is an out-of-order pair




- Inversions vs Directions
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do

x-ranku(ai) < x-ranks(a,) and
x-rankg(by) > x-rankg(b,)

(a1, a») is an inversion.

0

(a1, a») is an out-of-order pair

So W(¢) = Finversions = I(¢).
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- Inversions vs Ranks

Lemma 2. /,(¢) < X(¢) < 21(¢).

Lemma 3. /,(¢) < Y(¢) < 21,(¢).

This leads to a 4-approximation algorithm.
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- Inversions vs Ranks

Lemma 2. /,(¢) < X(¢) < 21(¢).
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x-ranka(a) =1 =3
x-rankg(b) = j =5

The matching has at least j — / x-Inversions.
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® Exact or algorithm to preserve directional
relations?
(1 + €) approximation?

- Thank youl




