One-to-one Point Set Matchings for Grid Map Layout

David Eppstein
Bettina Speckmann

Marc van Kreveld
Frank Staals

University of California, Irvine,
Utrecht University, TU Eindhoven
Given a map with n regions we want to visualise some data for each region.
Given a map with n regions we want to visualise some data for each region.

Options: Symbol map, Cartogram, Spatial Treemap (Wood and Dykes 2008)
Given a map with n regions we want to visualise some data for each region.
One-to-one Point Set Matching Problem

Represent the regions by a set A blue points.
Represent the grid by a set B blue points.
One-to-one Point Set Matching Problem

Represent the regions by a set A blue points.

Represent the grid by a set B blue points.

Goal: find the best matching $\phi : A \rightarrow B$
Optimisation Criteria

What is the “best” matching?

- Minimise the total L_1 distance.
What is the “best” matching?

- Minimise the total L_1 distance.
Optimisation Criteria

What is the “best” matching?

- Minimise the total L_1 distance.

- Maximise the number of pairs with the correct directional relation.
Minimising L_1-distance

We want to find a matching ϕ^*, translation t^*, and scaling λ^* that minimise

$$D(\phi, t, \lambda) = \sum_{a \in A} d(\lambda a + t, \phi(a)).$$
Minimising L_1-distance

We want to find a matching ϕ^* and translation t^* that minimise

$$D_T(\phi, t) = \sum_{a \in A} d(a + t, \phi(a)).$$
Aligning A and B decreases D_T

Lemma 1. For any matching ϕ, there is a t that x-aligns A and B and minimises $D_T(\phi, \cdot)$.
Minimising D_T

There is an optimal matching at an x-alignment.

Same trick for y-alignment.
Minimising D_T

There is an optimal matching at an x-alignment.

Same trick for y-alignment.

There is an optimal matching at an x- and y-alignment.

\implies There are at most n^4 such alignments.
Minimising D_T

There is an optimal matching at an x-alignment.

Same trick for y-alignment.

There is an optimal matching at an x- and y-alignment.

\implies There are at most n^4 such alignments.

Theorem 1. A ϕ^* and t^* that minimise D_T can be computed in $O(n^4 \cdot n^2 \log^3 n) = O(n^6 \log^3 n)$ time.

Uses the matching algorithm by Vaidya (1988)
Minimising D_Λ and D

Minimum distance matching under scaling?

Use exactly the same approach.
Minimising D_Λ and D

Minimum distance matching under scaling?

Use exactly the same approach.

Minimum distance matching under translation and scaling?
Minimising D_Λ and D

Minimum distance matching under scaling?

Use exactly the same approach.

Minimum distance matching under translation and scaling?

Same idea: x-align (y-align) two pairs of points.
Minimising D_Λ and D

Minimum distance matching under scaling?

Use exactly the same approach.

Minimum distance matching under translation and scaling?

Same idea: x-align (y-align) two pairs of points.

Theorem 2. A ϕ^*, t^*, and λ^* that minimise D can be computed in $O(n^8 \cdot n^2 \log^3 n) = O(n^{10} \log^3 n)$ time.
Preserving directional relations

\[\phi(a_1) \]

\[\phi(a_2) \]
Preserving directional relations

Minimising the number of out-of-order pairs

\[W(\phi) = \left| \left\{ (a_1, a_2) \mid (a_1, a_2) \in A \times A \land \text{dir}(a_1, a_2) \neq \text{dir}(\phi(a_1), \phi(a_2)) \right\} \right|. \]
Preserving directional relations

Minimising the number of out-of-order pairs

\[W(\phi) = \left| \left\{ (a_1, a_2) \mid (a_1, a_2) \in A \times A \land \text{dir}(a_1, a_2) \neq \text{dir}(\phi(a_1), \phi(a_2)) \right\} \right| . \]

Translation and scaling do not influence \(W \).
A 4-approximation algorithm

Compute a minimum distance matching with distance measure

\[w(a, b) = |x\text{-}\text{rank}_A(a) - x\text{-}\text{rank}_B(b)| + |y\text{-}\text{rank}_A(a) - y\text{-}\text{rank}_B(b)|. \]
A 4-approximation algorithm

Compute a minimum distance matching with distance measure

\[w(a, b) = |x\text{-}\text{rank}_A(a) - x\text{-}\text{rank}_B(b)| + |y\text{-}\text{rank}_A(a) - y\text{-}\text{rank}_B(b)|. \]

\[x\text{-}\text{rank}_P(p) = 3 \]
\[y\text{-}\text{rank}_P(p) = 4 \]
A 4-approximation algorithm

Compute a minimum distance matching with distance measure

\[w(a, b) = |x\cdot \text{rank}_A(a) - x\cdot \text{rank}_B(b)| + |y\cdot \text{rank}_A(a) - y\cdot \text{rank}_B(b)|. \]

\(w(a, b) \) is the \(L_1 \)-distance in terms of ranks.
A 4-approximation algorithm

Compute a minimum distance matching with distance measure

\[w(a, b) = |x\text{-}\text{rank}_A(a) - x\text{-}\text{rank}_B(b)| + |y\text{-}\text{rank}_A(a) - y\text{-}\text{rank}_B(b)|. \]

\(w(a, b) \) is the \(L_1 \)-distance in terms of ranks.

So compute an optimal matching using Vaidya’s Algorithm.

Theorem 3. A 4-approximation for minimising \(W \) can be computed in \(O(n^2 \log^3 n) \).
Inversions vs Directions

\(x\text{-}rank_A(a_1) < x\text{-}rank_A(a_2)\) and \(x\text{-}rank_B(b_1) > x\text{-}rank_B(b_2)\)

\((a_1, a_2)\) is an inversion.
Inversions vs Directions

\[x\text{-}\text{rank}_A(a_1) < x\text{-}\text{rank}_A(a_2) \text{ and } x\text{-}\text{rank}_B(b_1) > x\text{-}\text{rank}_B(b_2) \]

\((a_1, a_2)\) is an inversion.

\(\uparrow\updownarrow\)

\((a_1, a_2)\) is an out-of-order pair
Inversions vs Directions

\[(a_1, a_2) \text{ is an inversion.} \]
\[(a_1, a_2) \text{ is an out-of-order pair} \]
So \(W(\phi) = \# \text{inversions} = I(\phi) \).
Inversions vs Ranks

Lemma 2. \(I_x(\phi) \leq X(\phi) \leq 2I_x(\phi) \).
Inversions vs Ranks

Lemma 2. \(I_x(\phi) \leq X(\phi) \leq 2I_x(\phi) \).

Lemma 3. \(I_y(\phi) \leq Y(\phi) \leq 2I_y(\phi) \).

This leads to a 4-approximation algorithm.
Inversions vs Ranks

Lemma 2. $I_x(\phi) \leq X(\phi) \leq 2I_x(\phi)$.

x-rank$_A(a) = i = 3$

x-rank$_B(b) = j = 5$
Inversions vs Ranks

Lemma 2. $l_x(\phi) \leq X(\phi) \leq 2l_x(\phi)$.

x-rank$_A(a) = i = 3$

x-rank$_B(b) = j = 5$

The matching has at least $j - i$ x-inversions.
Inversions vs Ranks

Lemma 2. \(l_x(\phi) \leq X(\phi) \leq 2l_x(\phi) \).

\[
x\text{-rank}_A(a) = i = 3
\]
\[
x\text{-rank}_B(b) = j = 5
\]

The matching has at least \(j - i \) \(x \)-inversions.
Inversions vs Ranks

Lemma 2. $l_x(\phi) \leq X(\phi) \leq 2l_x(\phi)$.

x-rank$_A(a) = i = 3$

x-rank$_B(b) = j = 5$

The matching has at least $j - i$ x-inversions.
Concluding Remarks
Concluding Remarks
Concluding Remarks

- Faster algorithm to minimise D_T, D_Λ, and D?
Concluding Remarks

- Faster algorithm to minimise D_T, D_Λ, and D?
- Exact or algorithm to preserve directional relations?

 $(1 + \epsilon)$ approximation?
Concluding Remarks

- Faster algorithm to minimise D_T, D_Λ, and D?
- Exact or algorithm to preserve directional relations?
 $(1 + \epsilon)$ approximation?

Thank you!