Improved Grid Map Layout by Point Set Matching

David Eppstein
Bettina Speckmann

Marc van Kreveld
Frank Staals

University of California, Irvine, Utrecht University, TU Eindhoven
Visualising Geographic Data

Given a map with n regions we want to visualise some data for each region.
Visualising Geographic Data
Given a map with n regions we want to visualise some data for each region. e.g. US Presidential Elections

Problem: Visual Clutter
Visualising Geographic Data

Given a map with n regions we want to visualise some data for each region.

Idea: Use a Grid Map
Visualising Geographic Data

Given a map with n regions we want to visualise some data for each region.

Idea: Use a Grid Map

- London BikeGrid: gicentre.org/bikegrid
Visualising Geographic Data

Given a map with n regions we want to visualise some data for each region.

Idea: Use a **Grid Map**

- London BikeGrid: gicentre.org/bikegrid
- OD Maps [Slingsby, Kelly, Dykes, Wood]

based on Spatial Tree Maps [Dykes, Wood]
Assigning Cells to Regions

How do we assign the grid cells to the regions?

Tasks:
- Locate a cell
- Compare different cells
- Look for spatial patterns
Assigning Cells to Regions

How do we assign the grid cells to the regions?

Tasks:
- Locate a cell
- Compare different cells
- Look for spatial patterns

Optimisation criteria:
- Location
- Adjacency
- Relative orientation
Assigning Cells to Regions

How do we assign the grid cells to the regions?

Tasks:
- Locate a cell
- Compare different cells
- Look for spatial patterns

Optimisation criteria:
- Location
- Adjacency
- Relative orientation

NP-Hard
Assigning Cells to Regions

How do we assign the grid cells to the regions?

1-to-1 Point Set Matching Problem

 Regions \leadsto set of blue points A.
 Grid cells \leadsto set of red points B.

Goal: find the best matching $\phi : A \rightarrow B$
Optimising Location

Minimize the sum of the L_1-distances between matched points

We want to find a matching ϕ^* that minimises

$$D_1(\phi) = \sum_{a \in A} d(a, \phi(a))$$

where $d(a, b) = |a_x - b_x| + |a_y - b_y|$.
Optimising Location

We want to find a matching ϕ^*, translation t^*, and scaling λ^* that minimise

$$D(\phi, t, \lambda) = \sum_{a \in A} d(\lambda a + t, \phi(a)).$$

where $d(a, b) = |a_x - b_x| + |a_y - b_y|$. Minimize the sum of the L_1-distances between matched points under translation and scaling.
Lemma 1. For any matching \(\phi \), there is a \(t \) that \(x \)-aligns \(A \) and \(B \) and minimises \(D_T(\phi, \cdot) \).

Aligning \(A \) and \(B \) decreases \(D_T \)
Minimising D_T

There is an optimal matching at an x-alignment.

Same trick for y-alignment.
Minimising D_T

There is an optimal matching at an x-alignment.

Same trick for y-alignment.

There is an optimal matching at an x- and y-alignment.

\implies There are at most n^4 such alignments.
Minimising D_T

There is an optimal matching at an x-alignment.

Same trick for y-alignment.

There is an optimal matching at an x- and y-alignment.

\implies There are at most n^4 such alignments.

Theorem 1. A ϕ^* and t^* that minimise D_T can be computed in $O(n^4 \cdot n^2 \log^3 n) = O(n^6 \log^3 n)$ time.

Uses the matching algorithm by Vaidya (1988)
Minimising D_{Λ} and D

Minimum distance matching under scaling?

Use exactly the same approach.
Minimising D_Λ and D

Minimum distance matching under scaling?

Use exactly the same approach.

Minimum distance matching under translation and scaling?
Minimising D_Λ and D

Minimum distance matching under scaling?

Use exactly the same approach.

Minimum distance matching under translation and scaling?

Same idea: x-align (y-align) two pairs of points.
Minimising D_Λ and D

Minimum distance matching under scaling?
 Use exactly the same approach.

Minimum distance matching under translation and scaling?
 Same idea: x-align (y-align) two pairs of points.

Theorem 2. A ϕ^*, t^*, and λ^* that minimise D can be computed in $O(n^8 \cdot n^2 \log^3 n) = O(n^{10} \log^3 n)$ time.
Preserving directional relations

NW	NE
SW | SE

\(a_1\) \(a_2\)
Preserving directional relations

\[\phi(a_2) \quad \text{NE} \]

\[\phi(a_1) \]

\[a_1 \]

\[a_2 \]
Preserving directional relations

Maximize the number of pairs with the right orientation.
Preserving directional relations

Minimize the number of pairs with the **wrong** orientation.

\[W(\phi) = |\{(a_1, a_2) \mid (a_1, a_2) \in A \times A \land \text{dir}(a_1, a_2) \neq \text{dir}(\phi(a_1), \phi(a_2))\}|. \]
Preserving directional relations

Minimize the number of pairs with the wrong orientation.

\[W(\phi) = |\{(a_1, a_2) \mid (a_1, a_2) \in A \times A \land \text{dir}(a_1, a_2) \neq \text{dir}(\phi(a_1), \phi(a_2))\}|. \]

Translation and scaling do not influence \(W \).
A 4-approximation algorithm

Compute a minimum distance matching with distance measure

\[w(a, b) = |x\text{-}rank_A(a) - x\text{-}rank_B(b)| + |y\text{-}rank_A(a) - y\text{-}rank_B(b)|. \]
A 4-approximation algorithm

Compute a minimum distance matching with distance measure

\[w(a, b) = |x\text{-}rank_A(a) - x\text{-}rank_B(b)| + |y\text{-}rank_A(a) - y\text{-}rank_B(b)|. \]

\[x\text{-}rank_P(p) = 3 \]
\[y\text{-}rank_P(p) = 4 \]
A 4-approximation algorithm

Compute a minimum distance matching with distance measure

\[w(a, b) = |x\text{-rank}_A(a) - x\text{-rank}_B(b)| + |y\text{-rank}_A(a) - y\text{-rank}_B(b)|. \]

\(w(a, b) \) is the \(L_1 \)-distance in terms of ranks.
A 4-approximation algorithm

Compute a minimum distance matching with distance measure

\[w(a, b) = |x - \text{rank}_A(a) - x - \text{rank}_B(b)| + |y - \text{rank}_A(a) - y - \text{rank}_B(b)|. \]

\(w(a, b) \) is the \(L_1 \)-distance in terms of ranks.

So compute an optimal matching using Vaidya’s Algorithm.

Theorem 3. A 4-approximation for minimising \(W \) can be computed in \(O(n^2 \log^3 n) \).
Implementation & Evaluation

Implementation: Easy; we only need an LP-solver.

Evaluation: We compare with spatial tree maps [Wood & Dykes], and minimizing the L^2_2 distance [Cohen & Guibas].
Implementation & Evaluation

Implementation: Easy; we only need an LP-solver.

Evaluation: We compare with spatial tree maps [Wood & Dykes], and minimizing the L^2_2 distance [Cohen & Guibas]

- **Quantitative**
 - distance
 - # and % preserved directional relations
 - # and % preserved adjacencies

- **Qualitative**
Implementation & Evaluation

Implementation: Easy; we only need an LP-solver.

Evaluation: We compare with spatial tree maps [Wood & Dykes], and minimizing the L^2_2 distance [Cohen & Guibas]

- **Quantitative**
 - distance
 - # and % preserved directional relations
 - # and % preserved adjacencies

- **Qualitative**
Results

<table>
<thead>
<tr>
<th>Dir. Rel.</th>
<th>Adj.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG</td>
<td>88%</td>
</tr>
<tr>
<td>L_1</td>
<td>96%</td>
</tr>
<tr>
<td>W</td>
<td>97%</td>
</tr>
<tr>
<td>L_2</td>
<td>98%</td>
</tr>
</tbody>
</table>

The results are visualized in a map of France, with different regions represented by different colors. The map includes two main sections, with the left side showing the results for the method `[Wood and Dykes]` (SG) and the right side showing the results for the method L_2. The bottom row of the map presents another method represented by L_1, while the top row shows yet another method represented by W. Each region in the map is color-coded based on the accuracy of the method applied to that region.
Results for the United States and the London Boroughs are in the paper.
Concluding Remarks & Future Work

Our method works for arbitrary point sets.
Concluding Remarks & Future Work

Our method works for arbitrary point sets.
Concluding Remarks & Future Work

Our method works for arbitrary point sets.

Future work: How to find cells (not) to use?
Concluding Remarks & Future Work

Our method works for arbitrary point sets.

Future work: How to find cells (not) to use?

Thank you!
Inversions vs Directions

\[x\text{-}\text{rank}_A(a_1) < x\text{-}\text{rank}_A(a_2) \text{ and } x\text{-}\text{rank}_B(b_1) > x\text{-}\text{rank}_B(b_2) \]

\((a_1, a_2)\) is an inversion.
Inversions vs Directions

$x\text{-rank}_A(a_1) < x\text{-rank}_A(a_2)$ and $x\text{-rank}_B(b_1) > x\text{-rank}_B(b_2)$

(a_1, a_2) is an inversion.

(a_1, a_2) is an out-of-order pair
Inversions vs Directions

\[x\text{-}rank_A(a_1) < x\text{-}rank_A(a_2) \quad \text{and} \quad x\text{-}rank_B(b_1) > x\text{-}rank_B(b_2) \]

\((a_1, a_2)\) is an inversion.

\[\updownarrow \quad \leftrightarrow \]

\((a_1, a_2)\) is an out-of-order pair.

So \(W(\phi) = \# \text{inversions} = I(\phi) \).