
Improved Grid Map Layout by

Point Set Matching

David Eppstein Marc van Kreveld

Bettina Speckmann Frank Staals

University of California, Irvine,
Utrecht University, TU Eindhoven

Visualising Geographic Data
Given a map with n regions we want to visualise some data
for each region.

Visualising Geographic Data
Given a map with n regions we want to visualise some data
for each region.

Problem: Visual Clutter

e.g. US Presidential Elections

Visualising Geographic Data
Given a map with n regions we want to visualise some data
for each region.

Idea: Use a Grid Map

Visualising Geographic Data
Given a map with n regions we want to visualise some data
for each region.

Idea: Use a Grid Map

I London BikeGrid: gicentre.org/bikegrid

Visualising Geographic Data
Given a map with n regions we want to visualise some data
for each region.

Idea: Use a Grid Map

I London BikeGrid: gicentre.org/bikegrid

I OD Maps [Slingsby, Kelly, Dykes, Wood]

based on Spatial Tree Maps [Dykes,Wood]

Tasks:

I Locate a cell
I Compare different cells
I Look for spatial patterns

Assigning Cells to Regions

How do we assign the grid cells to the regions?

Tasks:

I Locate a cell
I Compare different cells
I Look for spatial patterns

Optimisation criteria:

I Location
I Adjacency
I Relative orientation

Assigning Cells to Regions

How do we assign the grid cells to the regions?

Tasks:

I Locate a cell
I Compare different cells
I Look for spatial patterns

Optimisation criteria:

I Location
I Adjacency
I Relative orientation

Assigning Cells to Regions

How do we assign the grid cells to the regions?

NP-Hard

Optimisation criteria:

I Location
I Adjacency
I Relative orientation

1-to-1 Point Set Matching Problem

Regions ; set of blue points A.

Goal: find the best matching φ : A→ B

Assigning Cells to Regions

How do we assign the grid cells to the regions?

Grid cells ; set of red points B. NP-Hard

Optimising Location

Minimize the sum of the L1-distances between matched
points

where d(a, b) = |ax − bx |+ |ay − by |.

DI (φ) =
∑
a∈A

d(a,φ(a))

We want to find a matching φ∗ that minimises

Optimising Location

We want to find a matching φ∗, translation t∗, and scaling
λ∗ that minimise

D(φ, t,λ) =
∑
a∈A

d(λa + t,φ(a)).

where d(a, b) = |ax − bx |+ |ay − by |.

Minimize the sum of the L1-distances between matched
points under translation and scaling.

Translation only

Translation only

Translation only

Lemma 1. For any matching φ, there is a t that
x-aligns A and B and minimises DT (φ, ·).

Translation only

Aligning A and B decreases DT

Minimising DT

There is an optimal matching at an x-alignment.

Same trick for y -alignment.

Minimising DT

There is an optimal matching at an x-alignment.

There is an optimal matching at an x- and y -alignment.

Same trick for y -alignment.

=⇒ There are at most n4 such alignments.

Minimising DT

There is an optimal matching at an x-alignment.

There is an optimal matching at an x- and y -alignment.

Same trick for y -alignment.

=⇒ There are at most n4 such alignments.

Theorem 1. A φ∗ and t∗ that minimise DT can be
computed in O(n4 · n2 log3 n) = O(n6 log3 n) time.

Uses the matching algorithm by Vaidya (1988)

Minimising DΛ and D

Minimum distance matching under scaling?

Use exactly the same approach.

Minimising DΛ and D

Minimum distance matching under scaling?

Minimum distance matching under translation and scaling?

Use exactly the same approach.

Minimising DΛ and D

Minimum distance matching under scaling?

Minimum distance matching under translation and scaling?

Use exactly the same approach.

Same idea: x-align (y -align) two pairs of points.

Minimising DΛ and D

Minimum distance matching under scaling?

Minimum distance matching under translation and scaling?

Use exactly the same approach.

Same idea: x-align (y -align) two pairs of points.

Theorem 2. A φ∗, t∗, and λ∗ that minimise D can be
computed in O(n8 · n2 log3 n) = O(n10 log3 n) time.

Preserving directional relations

a1

a2

NENW

SW SE

Preserving directional relations

a1

a2
φ(a2)

φ(a1)

NE NE

Preserving directional relations

a1

a2
φ(a2)

φ(a1)

NE NE

Maximize the number of pairs with the right orientation.

Minimzie the number of pairs with the wrong orientation︸ ︷︷ ︸
out-of-order pairs

Preserving directional relations

a1

a2
φ(a2)

φ(a1)

NE

Minimize the number of pairs with the wrong orientation.

W (φ) = |{(a1, a2) | (a1, a2) ∈ A× A ∧
dir(a1, a2) 6= dir(φ(a1),φ(a2))}|.

NE

Minimzie the number of pairs with the wrong orientation︸ ︷︷ ︸
out-of-order pairs

Preserving directional relations

a1

a2
φ(a2)

φ(a1)

NE

Minimize the number of pairs with the wrong orientation.

W (φ) = |{(a1, a2) | (a1, a2) ∈ A× A ∧
dir(a1, a2) 6= dir(φ(a1),φ(a2))}|.

Translation and scaling do not influence W .

NE

Compute a minimum distance matching with distance
measure

w(a, b) = |x-rankA(a)− x-rankB(b)| +

|y -rankA(a)− y -rankB(b)|.

A 4-approximation algorithm

Compute a minimum distance matching with distance
measure

w(a, b) = |x-rankA(a)− x-rankB(b)| +

|y -rankA(a)− y -rankB(b)|.

x-rankP(p) = 3

P

p
y -rankP(p) = 4

A 4-approximation algorithm

Compute a minimum distance matching with distance
measure

w(a, b) = |x-rankA(a)− x-rankB(b)| +

|y -rankA(a)− y -rankB(b)|.

A 4-approximation algorithm

w(a, b) is the L1-distance in terms of ranks.

Compute a minimum distance matching with distance
measure

w(a, b) = |x-rankA(a)− x-rankB(b)| +

|y -rankA(a)− y -rankB(b)|.

So compute an optimal matching using Vaidya’s
Algorithm.

A 4-approximation algorithm

w(a, b) is the L1-distance in terms of ranks.

Theorem 3. A 4-approximation for minimising W can be
computed in O(n2 log3 n).

Implementation & Evaluation

Implementation: Easy; we only need an LP-solver.

Evaluation: We compare with spatial tree maps [Wood &
Dykes], and minimizing the L2

2 distance [Cohen & Guibas]

Implementation & Evaluation

Implementation: Easy; we only need an LP-solver.

Evaluation: We compare with spatial tree maps [Wood &
Dykes], and minimizing the L2

2 distance [Cohen & Guibas]

I Quantitative

I Qualitative

� distance
� # and % preserved directional relations
� # and % preserved adjacencies

Implementation & Evaluation

Implementation: Easy; we only need an LP-solver.

Evaluation: We compare with spatial tree maps [Wood &
Dykes], and minimizing the L2

2 distance [Cohen & Guibas]

I Quantitative

I Qualitative

� distance
� # and % preserved directional relations
� # and % preserved adjacencies

Results

WL1

L2
2SG [Wood and Dykes]

Dir. Rel. Adj.

SG 88% 69%
L1 96% 76%
W 97% 82%
L2

2 98% 81%

Results

WL1

L2
2SG [Wood and Dykes]

Dir. Rel. Adj.

SG 88% 69%
L1 96% 76%
W 97% 82%
L2

2 98% 81%

Method Distance Directional Rel. Adjacencies

L1 L2 L2
2 # % # %

SpatialGrid 4545 3592 300482 2008 89.01% 77 73.33%
I 4035 3342 311327 2024 89.72% 79 75.24%
L1 2838 2355 166060 2046 90.69% 78 74.29%
W 4221 3352 273273 2098 93.00% 79 75.24%

L2
2 2929 2260 139110 2096 92.91% 83 79.05%

Method Distance Directional Rel. Adjacencies

L1 L2 L2
2 # % # %

I 2897 2296 182257 1040 98.48% 59 72.84%
L1 2803 2286 200593 1008 95.45% 54 66.67%
W 2936 2277 177927 1042 98.67% 61 75.31%

L2
2 2890 2228 172089 1042 98.67% 61 75.31%

W L2
2L1I

W L2
2L1

WA

OR

MT

ID

WY

NV

CA

UT

CO

NM

AZ

KS

NE

SD

ND MN

IA

MO

OK

TX

MI

IN

IL

WI

PAOH

KY

ALMS

AR

LA FLGA SC

NC

VAWV

NY

MENHVT

CT

MA RI

NJ

DE

MDTN

WA

OR

MT

ID

WYNV

CA

UT CO

NM

AZ

KS

NE

SD

ND MN

IA

MO

OK

TX

MI

INIL

WI

PA

OH

KY

ALMS

AR

LA FLGA

SC

NC

VA

WV

NY ME

NH

VT

CT

MA

RI

NJ

DE

MD

TN

WA

OR

MT

ID

WYNV

CA

UT

CO

NM

AZ

KS

NE

SD

ND MN

IA

MO

OK

TX

MI

IN

IL

WI PA

OH

KY

ALMS

AR

LA FLGA

SC NC

VAWV

NY MENH

VT

CT

MA

RI

NJ

DE

MD

TN

ISpatialGrid (Wood and Dykes [13])

WA

OR

MT

ID WY

NV

CA

UT

CO

NM

AZ

KS

NE

SD

ND MN

IA

MO

OK

TX

MI

IN

IL

WI

PA

OH

KY

ALMSAR

LA FL GA SC

NC

VAWV

NY

MENHVT

CT

MA

RI

NJ

DE

MD

TN

WA

OR

MT

ID

WY

NV

CA UT

CO

NMAZ

KS

NE

SD

ND MN

IA

MO

OK

TX

MI

IN

IL

WI

PA

OH

KY

AL

MS

AR

LA FL GA SC

NC VA

WV

NY

ME

NH

VT

CT

MA

RI

NJ

DEMD

TN

Results for the United States and the
London Boroughs are in the paper.

Concluding Remarks & Future Work

Our method works for arbitrary point sets.

Concluding Remarks & Future Work

Our method works for arbitrary point sets.

Concluding Remarks & Future Work

Our method works for arbitrary point sets.

Future work: How to find cells (not) to use?

Thank you!

Concluding Remarks & Future Work

Our method works for arbitrary point sets.

Future work: How to find cells (not) to use?

Inversions vs Directions

b1

b2

a1

a2

x-rankA(a1) < x-rankA(a2) and
x-rankB(b1) > x-rankB(b2)

(a1, a2) is an inversion.

Inversions vs Directions

b1

b2

a1

a2

southwest

southeast

x-rankA(a1) < x-rankA(a2) and
x-rankB(b1) > x-rankB(b2)

(a1, a2) is an inversion.

(a1, a2) is an out-of-order pair
m

Inversions vs Directions

b1

b2

a1

a2

southwest

southeast

x-rankA(a1) < x-rankA(a2) and
x-rankB(b1) > x-rankB(b2)

(a1, a2) is an inversion.

(a1, a2) is an out-of-order pair
m

So W (φ) = #inversions = I (φ).

