University of California, Irvine,

Utrecht University, TU Eindhoven

- Visualising Geographic Data

Given a map with n regions we want to visualise some data
for each region.

- Visualising Geographic Data

Given a map with n regions we want to visualise some data
for each region. e.g. US Presidential Elections

Problem: Visual Clutter

- Visualising Geographic Data

Given a map with n regions we want to visualise some data
for each region.

Idea: Use a Grid Map

- Visualising Geographic Data -

Given a map with n regions we want to visualise some data
for each region.

N A e N
iiiiﬂ%ﬂ

Idea: Use a Grid Map
» London BikeGrid: gicentre.org/bikegrid

- Visualising Geographic Data -
Given a map with n regions we want to visualise some data

for each region.
e

L I e
S
ot 9 gL

SRR
i e i g
= et

» London BikeGrid: gicentre.org/bikegrid
» OD Maps [Slingsby, Kelly, Dykes, Wood]

based on Spatial Tree Maps [Dykes,Wood|

- Assigning Cells to Regions

How do we assign the grid cells to the regions?

Tasks:

» lLocate a cell
» Compare different cells
» Look for spatial patterns

- Assigning Cells to Regions

How do we assign the grid cells to the regions?

Tasks: Optimisation criteria:
» Locate a cell » Location

» Compare different cells » Adjacency

» Look for spatial patterns » Relative orientation

- Assigning Cells to Regions

How do we assign the grid cells to the regions?

Tasks: Optimisation criteria:

» Locate a cell » Location

» Compare different cells > Adiaceney— NP-Hard
» Look for spatial patterns » Relative orientation

- Assigning Cells to Regions

How do we assign the grid cells to the regions?

1-to-1 Point Set Matching Problem Optimisation criteria:
Regions ~~ set of blue points A. » Location

Grid cells ~» set of red points B. > Adiaceney— NP-Hard
» Relative orientation

- Goal: find the best matching ¢ : A — B -

- Optimising Location

Minimize the sum of the L;-distances between matched
points

We want to find a matching ¢* that minimises

Di(¢) =) d(a, ¢(a))

acA

- where d(a, b) = |ax — by| + |a, — by |.

- Optimising Location

Minimize the sum of the L;-distances between matched
points under translation and scaling.

We want to find a matching ¢*, translation t*, and scaling
A* that minimise

D(6,t.0) = Y d(Aa+1t,6(2))

acA

- where d(a, b) = |ax — by| + |a, — by |.

- Translation only

- Translation only

| 1
L h-—-—.

- Translation only

- Translation only

Aligning A and B decreases D

Lemma 1. For any matching ¢, there is a t that
- x-aligns A and B and minimises D1(¢,).

- Minimising Dy

There I1s an optimal matching at an x-alignment.

Same trick for y-alignment.

- Minimising Dy

There I1s an optimal matching at an x-alignment.

Same trick for y-alignment.
There is an optimal matching at an x- and y-alignment.

— There are at most n* such alignments.

- Minimising Dy

There I1s an optimal matching at an x-alignment.

Same trick for y-alignment.
There is an optimal matching at an x- and y-alignment.

— There are at most n* such alignments.

Theorem 1. A ¢* and t* that minimise D+ can be
computed in O(n* - n?log> n) = O(n®log> n) time.

Uses the matching algorithm by Vaidya (1988)

- Minimising Dx and D

Minimum distance matching under scaling?

Use exactly the same approach.

- Minimising Dx and D

Minimum distance matching under scaling?

Use exactly the same approach.

Minimum distance matching under translation and scaling?

- Minimising Dx and D

Minimum distance matching under scaling?

Use exactly the same approach.

Minimum distance matching under translation and scaling?

Same idea: x-align (y-align) two pairs of points.

- Minimising Dx and D

Minimum distance matching under scaling?
Use exactly the same approach.
Minimum distance matching under translation and scaling?

Same idea: x-align (y-align) two pairs of points.

Theorem 2. A ¢, t*, and * that minimise D can be
computed in O(n® - n?log> n) = O(n'® log® n) time.

- Preserving directional relations

NW NE
032
.31
SW SE

- Preserving directional relations

NE NE
. ¢(az)

91 ¢(a1)

- Preserving directional relations

NE . NE
o d(a2)

91 ¢(a1)

Maximize the number of pairs with the right orientation.

- Preserving directional relations

NE . NE
o d(a2)

91 ¢(a1)

Minimize the number of pairs with the wrong orientation.

N

out-of-order pairs

W(¢) = {(a1,a2) [(a1, a2) € AX A A
dir(a1, a) # dir(¢(a1), ¢(a2))}|-

- Preserving directional relations

NE . NE
o d(a2)

91 ¢(a1)

Minimize the number of pairs with the wrong orientation.

N

out-of-order pairs

W(¢) = {(a1,a2) [(a1, a2) € AX A A
dir(a1, a) # dir(¢(a1), ¢(a2))}|-

Translation and scaling do not influence V.

- A 4-approximation algorithm

Compute a minimum distance matching with distance
measure

w(a, b) = |x-ranka(a) — x-rankg(b)| +
\y-ranka(a) — y-rankg(b)|.

- A 4-approximation algorithm

Compute a minimum distance matching with distance
measure

w(a, b) = |x-ranka(a) — x-rankg(b)| +
\y-ranka(a) — y-rankg(b)|.

- A 4-approximation algorithm

Compute a minimum distance matching with distance
measure

w(a, b) = |x-ranka(a) — x-rankg(b)| +
\y-ranka(a) — y-rankg(b)|.

w(a, b) is the Li-distance in terms of ranks.

- A 4-approximation algorithm

Compute a minimum distance matching with distance
measure

w(a, b) = |x-ranka(a) — x-rankg(b)| +
\y-ranka(a) — y-rankg(b)|.

w(a, b) is the Li-distance in terms of ranks.

So compute an optimal matching using Vaidya's
Algorithm.

Theorem 3. A 4-approximation for minimising W can be
computed in O(n?log> n).

- Implementation & Evaluation

Implementation: Easy; we only need an LP-solver.

Evaluation: We compare with spatial tree maps [Wood &
Dykes], and minimizing the L5 distance [Cohen & Guibas]

- Implementation & Evaluation

Implementation: Easy; we only need an LP-solver.

Evaluation: We compare with spatial tree maps [Wood &
Dykes], and minimizing the L5 distance [Cohen & Guibas]

» Quantitative

¢ distance
¢ + and % preserved directional relations
¢ + and % preserved adjacencies

» Qualitative

- Implementation & Evaluation

Implementation: Easy; we only need an LP-solver.

Evaluation: We compare with spatial tree maps [Wood &
Dykes], and minimizing the L5 distance [Cohen & Guibas]

» Quantitative

¢ distance
¢ + and % preserved directional relations
¢ + and % preserved adjacencies

» Qualitative

- Results
&

e e &
.,
ﬁ%@ﬁ’aﬁ mﬁ»‘i

R)
o

N

5

A

Dir. Rel.

e
aes
e

[e

S

Adj.

88%
96%
97%
98%

69%
76%
82%
81%

SG [Wood and Dykes]
I I O O B

---T----
1

- Results

g, HENENNNEE Bl

E - 3|0 0 2 7 G
GUNGNG ., oo [0 [[[[

)
(o o o e Ich i o T [[T [o |

‘.’.)' .
QOB [P 0 I S O N
L)

D

g o T [[Lo [o]

SpatialGrid (Wood and Dykes [13]) I

8 52 2 2 2 A KO I8 52 23 2 0 A K EEEEE SENEE NN .
- [{E o= [SERIERMNERNN | v | = |§ o |NM RS e ~ | v :
! Ly w L
o T [o fow] e[fo [or [ve [Jow oe [o [i [[[Jor] e
oo [[[o
L w 3

Method Distance Directional Rel. Adjacencies

L 2 o o Method Distance Directional Rel. Adjacencies
1 L L # % # % L4 Ly 3 # % % %
f"a"a'G”d :ggg ggig gggggg gggi gg";;:;: ;; ;:ZZ:;: | 2897 2206 182257 1040 08.48% 50 72.84%
Ly 2838 2355 166060 2046 90.69% 78 74.29% by 2803 2286 200593 1008 95.45% 54 66.67%
- w 4221 3352 273273 2008 93.00% 79 75.24% w 2036 2217 Lrr927 1042 98.67% 61 75:31%
3 on0 o a1t 2006 010 s gy 2 2890 2228 172089 1042 98.67% 61 75.31%

Results for the United States and the
London Boroughs are in the paper.

1

- Concluding Remarks & Future Work

Our method works for arbitrary point sets.

- Concluding Remarks & Future Work

Our method works for arbitrary point sets.

- Concluding Remarks & Future Work

Our method works for arbitrary point sets.

Future work: How to find cells (not) to use?

- Concluding Remarks & Future Work

Our method works for arbitrary point sets.

Future work: How to find cells (not) to use?

Thank you!

- Inversions vs Directions

- -y,
.....
. ~

—"
-

x-ranku(ai) < x-ranks(a,) and
x-rankg(by) > x-rankg(b,)

(a1, a») is an inversion.

- Inversions vs Directions

- -y,
.....
. ~

a; ..~ southwest by

southeast

—"
-

x-ranku(ai) < x-ranks(a,) and
x-rankg(by) > x-rankg(b,)

(a1, a») is an inversion.

0

(a1, a») is an out-of-order pair

- Inversions vs Directions

- Rl IS
‘‘‘‘‘
. ~

ai SOUthWV by
by ¢
southeast :

—"
-

do

x-ranku(ai) < x-ranks(a,) and
x-rankg(by) > x-rankg(b,)

(a1, a») is an inversion.

0

(a1, a») is an out-of-order pair

So W(¢) = Finversions = I(¢).

