Improved Grid Map Layout by Point Set Matching

Marc van Kreveld?
Dept. of Computer Science, Dept. of Information and
University of California, Computing Sciences,

Irvine Utrecht University

David Eppstein*

Frank Staals®
Dept. of Information and
Computing Sciences,
Utrecht University

Bettina Speckmann¥
Dept. of Mathematics and
Computer Science,

TU Eindhoven

Figure 1: The states mapped onto the stars of the US Flag using the minimum L;-distance matching under translation. The two white stars are

reserved for Alaska and Hawaii.

ABSTRACT

Associating the regions of a geographic subdivision with the cells
of a grid is a basic operation that is used in various types of maps,
like spatially ordered treemaps and OD maps. In these cases the
regular shapes of the grid cells allows easy representation of extra
information about the regions. The main challenge is to find an
association that allows a user to find a region in the grid quickly.
We call the representation of a set of regions as a grid a grid map.

We introduce a new approach to solve the association problem
for grid maps by formulating it as a point set matching problem:
Given two sets A (the centroids of the regions) and B (the grid
centres) of n points in the plane, compute an optimal one-to-one
matching between A and B. We identify three optimisation crite-
ria that are important for grid map layout: maximise the number
of adjacencies in the grid that are also adjacencies of the regions,
minimise the sum of the distances between matched points, and
maximise the number of pairs of points in A for which the match-
ing preserves the directional relation (SW, NW, etc.). We consider
matchings that minimise the L -distance (Manhattan-distance), the
ranked L -distance, and the L%-distance, since one can expect that
minimising distances implicitly helps to fulfill the other criteria.

We present algorithms to compute such matchings and perform
an experimental comparison that also includes a previous method to
compute a grid map. The experiments show that our more global,
matching-based algorithm outperforms previous, more local ap-
proaches with respect to all three optimisation criteria.

Index Terms: F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

1 INTRODUCTION

Various types of maps associate the regions of a geographic sub-
division to the cells of a grid. Prominent examples of such grid

*e-mail: eppstein@ics.uci.edu
Se-mail: {m.j.vankreveld, f.staals} @uu.nl
Ye-mail: speckman@win.tue.nl

maps are spatially ordered treemaps [16] and OD-maps [17]. The
regular shape of the grid cells allows easy representation of var-
ious types of information about the regions, see for example the
London BikeGrid (gicentre.org/bikegrid) and Fig. 2. A
major challenge when creating such grid maps is the layout of the
regions, that is, the association of regions in the input subdivision
to cells in the grid.

Tasks. We identify the tasks that grid maps should support when
they are used. Firstly, a user needs to be able to locate the cell
of a region in the grid map in order to retrieve the information it
contains. Here we assume that the user is familiar with the rough
layout of the geographic regions, otherwise she cannot do anything
else than scanning all cells of the grid map. Secondly, a user may
compare the information of two regions, after locating both cells. A
user may also want to compare the information of a region with the
surrounding regions. Thirdly, the user may look for spatial patterns,
for example that the southern regions all have a relatively high value
for some attribute X . Other possible tasks on grid maps exist; for a
discussion on visual tasks we refer to [5].

For the location task, it is to be expected that a user will look
for a region in the grid map based on her knowledge: if the user is
looking for Louisiana on a grid map of the USA, she will look first
in the bottom middle. If the cell there is for Alabama or Mississippi,
then she may expect to find Louisiana a bit more to the left.

Optimisation criteria. The tasks and discussion above suggest that
the following criteria are important to decide which regions of the
map correspond to which cells of the grid map:

e Location (Louisiana should be in the bottom middle).

e Adjacency (Maine and New Hampshire should be adjacent).

e Relative orientation (Utah should be northwest of New Mex-
ico).

While the spatial pattern task is not explicitly represented by these
criteria, it is likely that the location criterion will help to fulfill it.
With these criteria in mind we formalize the problem of assigning
the regions to the grid cells.

Formal problem definition. We model the association problem
for grid maps as a weighted point set matching problem between
the centroids of the input regions and the centres of the grid cells.

o B |E.
=

la

E

vad
ndo
99d
19

VPAd
ANd
[€7VA)

d5S
ds
sIPYIO

Liu
alle
Ldla
LAle

= FIEF

5

Figure 2: Election results from the Netherlands in a grid map.

Let M be a map with n regions and let G be a grid with n grid cells.
To define the distance between regions and grid cells we will use the
centroids of the regions and the centroids (middle) of the grid cells.
Note that we need to bring the geographic map and the grid map
into the same coordinate system before distance has any meaning.
First of all, we need to choose a map projection to obtain two planar
point sets. Note that the choice of the map projection influences
the result of the matching. Second, we translate one point set with
respect to the other and scale by z- and y-coordinates. Rotation and
other transformations are less important, although there are cases
where a rotated grid can represent a map better than a standard grid
(for example, Japan or Malaysia).

Let A be the set of centroids of the regions in M and let B be
the set of grid cell centres of G. We want to compute a one-to-one
matching ¢ between the regions in the map (or points in A) and
the cells in the grid (or points in 1), such that the resulting grid
map is as similar to M as possible. The three criteria we listed
before for the quality of the matching ¢ are now: (i) minimising
the sum of the distances between matched points—one from A and
one from B—under translation, scaling, and both translation and
scaling of point set A, (ii) maximising the number of adjacencies
in M that the matching preserves in G, and (iii) maximising the
number of pairs of points in A for which the matching preserves
the directional relation. That is, if a point a2 lies northwest of point
a1, then we would like ¢(az) to lie northwest of ¢(a1) as well.

Related work. We distinguish research that presents related visu-
alisations and research that discusses related algorithmic ideas, in
particular point set matching problems.

There is a longstanding cartographic tradition of associating sta-
tistical information with the regions of a map. Such information
can be captured in various forms of visualizations, such as graphs or
charts. Often these visualizations are directly overlayed onto the as-
sociated base map, for example in proportional symbol maps [10].
Such an overlay necessarily has to deal with occlusions, both of the
symbols themselves and of the base map. The work of Cabello et
al. [4] tries to alleviate some of the issues arising. Also van Krev-
eld et al. study problems related to placing diagrams on maps [13].
In particular, they try to minimize the amount of overlap between
diagrams of different regions, and between the diagrams and other
regions and features of the map. Another approach are the necklace
maps [11] introduced by Speckmann and Verbeek which move vi-
sualization to a necklace surrounding the map. Still, none of these
methods can fully avoid visual clutter when detailed statistical vi-
sualizations are combined with small geographic regions. If the
exact geographic location of the regions and their associated visu-
alizations is not paramount, grid maps are an attractive alternative

which provides equal space for the visualizations of every region.

Grid maps are a simple type of spatially ordered treemap [16].
A spatially ordered treemap, or spatial treemap for short, need not
have the rigorous grid structure of a grid map. A (spatial) treemap
can fill a rectangular region with any number of rectangles, each of
which may have a different size. Thus, a grid map can be seen as
a single-level spatial treemap in which all rectangles have the same
size and orientation, and are nicely aligned in a regular grid. We
focus on grids because they are the simplest partition of a space,
where all cells get the same space to show extra information. These
properties may improve the readability of the visualization. Note,
though, that our algorithms do not require the rectangular grid struc-
ture to function properly, see for example Fig. 1, which uses a dif-
ferent type of grid.

Wood et al. [18] use a grid map, or a spatial matrix as they call it,
to visualize information from the London BikeGrid: London’s bicy-
cle hiring scheme. They use an adapted spatial treemap [16] to map
the docking-stations to the grid cells. Each cell itself displays the
number of available bikes (in the corresponding docking-station)
using a graph and different colours.

Grid maps are also related to OD maps [17, 18, 9]. OD maps
are used to display the flow in Origin-Destination data. An OD
map is a grid in which each cell corresponds to an origin region.
Each cell again contains a grid in which each destination region is
represented by a cell. When the grids preserve the spatial layout
of the underlying map they can show spatial patterns in the data,
an improvement over OD matrices introduced by Voorhees [15].
Hence these OD maps can be seen as two-level grid maps. A grid
map is therefore not a new type of map, but the name for a grid
whose cells are associated with geographic regions or locations in
an optimised manner.

We listed three optimisation criteria for grid map layout. They
all concern a sum of counts or distances, and therefore the global
approach of matching is natural. The first optimisation criterion
relates to minimising the distance when matching two point sets.
Many papers on this topic exist in computational geometry and
shape matching. For surveys, see Alt and Guibas [1] and Veltkamp
and Hagedoorn [14]. Existing results differ in the matching dis-
tance used, whether the matching is bipartite or not, whether the
point sets have the same cardinality or not, and which transforma-
tions can be applied to the one point set to match it best with the
other. Distances of matchings can be based on sums of matched
points in the L; (Manhattan), L2 (Euclidean), or L2 metric, but
they can also be based on minimising the maximum distance of
the matched points. The latter type of matchings are called bottle-
neck matchings. Another well-known metric is the Earth mover’s
distance, which is useful when the points have different weights.
Transformations that may be applied before matching can be trans-
lation, scaling, rotation, and reflection. Given our objectives, ro-
tation and reflection are less suitable transformations. Translation
and scaling on x- and y-coordinates, however, are suitable to place
a geographic map into the same coordinate system as a grid map.

Efrat et al. [7] present an O(n® log? n) algorithm to compute a
minimum bottleneck matching of two sets of n points under trans-
lation. A bottleneck matching minimizes the maximum distance
between a pair of matched points, However, such a matching has
the unfortunate effect that all point pairs with smaller distances can
be matched arbitrarily without influencing the resulting distance.
Therefore, we study matchings that minimize the sum of the dis-
tances between matched pairs of points.

The second optimisation criterion is preserving the maximum
number of adjacencies. Unfortunately, even a simple version of the
problem is NP-hard [3]. Furthermore, it is clear that concentrating
purely on adjacencies will not give good grid map layouts because
the other two criteria will be grossly violated in many cases. Hence
we will not optimise this criterion explicitly.

The third optimisation criterion is preserving directional rela-
tions. To our knowledge, this type of criterion has not been studied
before in point set matching. The computational complexity of the
problem is unknown.

It seems likely that using a matching that minimises sums of dis-
tances will also be reasonably good for preserving adjacencies and
directional relations. Hence we concentrate on this idea, and later
analyse the performance of all methods on these criteria experimen-
tally. The metrics we consider are the L -distance, the L%-distance,
and a ranked L, -distance. The ranked L-distance can compensate
for situations where the regions on a map are unevenly spaced in
z- or y-direction, like the USA: horizontal spacing for the western
States is considerably larger than for the eastern States. The ranked
L1 -distance will ignore this aspect in its value. Furthermore, this
distance allows us to prove a theoretical approximation bound for
optimising the number of correct direction relations.

We do not consider bottleneck matchings for the reasons we
mentioned earlier. We also do not consider the Earth mover’s dis-
tance because we do not have weighted points. Finally, we do not
consider the sum of Ly-distances because even for a given match-
ing, we cannot compute the optimal translation analytically, im-
plying that computing the optimal matching using the sum of Lo-
distances is not possible.

Results and organisation. We present algorithms to solve the asso-
ciation problem for grid maps based on optimal matchings between
two point sets. In the next section we show how to compute such
optimal matchings. We study minimum distance matchings using
the L,-distance under translation, scaling, and the combination of
translation and scaling, and show that these can be solved in polyno-
mial time. Whereas a matching itself can be computed efficiently,
optimising matchings over translations and scalings will not be fea-
sible for large-size instances, however. We also study a ranked L1 -
distance, since it gives theoretical approximation guarantees for op-
timising the number of relative orientations. The proofs for the ap-
proximation results are given in a forthcoming extended version of
the paper. We also discuss our implementation using an LP solver
and show that it can easily incorporate cases where not all grid cells
should be used.

Section 3 presents an experimental analysis of matchings using
the L;-distance, L;-distance by ranks, and L3-distance. The latter
algorithm is by Cohen and Guibas [6], who solve minimum L2-
distance matching under translations only. We compare matching
by these distance measures with the approach used by Wood and
Dykes [16] and report the summed distances, the percentage of ad-
jacencies kept, and the percentage of correct relative orientations.
Our data consists of the maps of France, the United States, and the
London boroughs. Our matching approach outperforms previous
approaches to solve the association problem on the three criteria.

The matching approach does not depend on the grid pattern, we
can apply it to other patterns as well. For example, we can associate
the States in the US to the stars of the flag, as shown in Fig. 1.

2 COMPUTING A GRID MAP
2.1 Minimising Distance

We first introduce some notation. For a point a = (ag,ay) and a
translation ¢ = (t5,ty) we write a + t = (ag + to, ay + ty). We
also use this notation for a set of points: A+t ={a+t|a € A}.
Similarly, for a scaling A = (Ag, Ay) we write A\a = (Ay - @z, Ay -
ay). A transformation (either translation or scaling) in which both
components have the same value ¢ we denote by ¢ = (c, c).

Let ¢: A — B be a one-to-one matching for the point sets A
and B, let t be a translation and let A be a scaling. Then we define
the fotal distance of matching ¢ with translation ¢ and scaling A as

D(¢,t,)) = > d(ha+t,¢(a))

acA

where d(a,b) denotes the Li-distance (Manhattan-distance) be-
tween a and b. Additionally, we define Dy (¢,t) = D(¢,t,1),
DA(¢7)‘) = D(¢7 0,)‘) and Dl(¢) = D(¢7 0, 1)

We now want to find a matching together with a translation
and/or scaling that minimises the total distance. More formally, let
® be the collection of all one-to-one matchings between A and B,
let 7 be the collection of all translations, and let A be the collection
of all scalings, then we try to find a matching ¢* € ®, a translation
t* € T, and a scaling * € A such that

D(¢",t", ") = D(,t, 7).

min
PEPtET ,NEA
Since we are using the Li-distance we can decompose d into a
horizontal and a vertical component: d(a,b) = z(a,b) + y(a,b)
with z(a, b) = |az—be| and y(a, b) = |ay —by|. We generalise this
notion to D, which gives us D(¢,t,A) = X (¢, t, \) + Y (¢, t, A).
The functions X7, Y7, X4, etc. are defined accordingly.

Minimising L;. The easiest case one can consider is to com-
pute a matching that minimises Dy: a minimum distance matching
without translation or scaling. This problem can be solved using
Vaidya’s method [12] in O(n? log® n) time.

Minimising L; under translation. To find a minimum distance
matching under translation, i.e. a matching that minimises D, we
identify a (finite) set of translations 7" C 7 that contains an optimal
translation. We then use Vaidya’s method for each translation in 7'
to compute an optimal matching.

We say a translation ¢ is horizontal if and only if ¢ = (¢, 0) for
some ¢ € R. Point sets A and B are x-aligned if (and only if) there
is a point « € A and a point b € B with a;, = b,. We define
vertical translation and y-aligned symmetrically.

We now observe that for any matching ¢ between point sets A
and B that are not z-aligned there is a horizontal translation that
does not increase X7(¢) (in most cases x-aligning the point sets
will even decrease the distance X7(¢)). See Fig. 3 for an illustra-
tion. Hence:

Lemma 1. Let A and B be two non x-aligned sets of n points in
the plane, and let ¢ be any one-to-one matching between A and B.
Then there is a horizontal translation t* # 0 such that A* = A+t*
and B are x-aligned and D7 (¢,t*) < D1(¢).

Proof. We consider only horizontal translations ¢* so it follows that
Y7 (¢,t*) = Yi(#). The function X' () = X7(,t) is piecewise-
linear in ¢ and has its minimum at a breakpoint, say ¢'. Since X is
the sum of aset F = {fo | fa(t) = |ae +te — d(a)z| Aa € A} of
piecewise-linear functions it follows that there is a function f, € F
which also has its minimum at ¢’. The minimum value of f, is zero
and occurs at its breakpoint. Hence f,(¢') = 0. This means that
a + t' z-aligns with ¢(a). We conclude that there is a translation
t* =t # 0, that z-aligns A* and B, and minimises X’. The
lemma follows. O

Analogously there is a vertical translation that y-aligns the two
sets of points and does not increase Y.

Consider the set T of translations that both z-align and y-align
A and B. A translation ¢ € T z-aligns a pair of points (a,b),
and independently y-aligns a pair of points (a’,b’). This means T'
contains at most n* translations.

Now if ¢ and ¢ are a matching and a translation that minimise
D it follows from Lemma 1 (and its counterpart for y-aligning
the point sets) that we can z- and y-align the point sets without
increasing the total distance of matching ¢. Hence, 1" contains an
optimal translation ¢*. This means we can find an optimal matching
¢ by computing a minimum distance matching for all translations
in T'. By using the algorithm of Vaidya [12] to compute the point
set matchings we obtain the following result:

Figure 3: We can improve a matching between A (grey) and B
(white) indicated by the dashed lines by z-aligning the point sets (the
dotted lines).

Theorem 1. Given two sets A and B of n points in the plane, a
one-to-one matching ¢ and a translation t* that minimise D1 can
be computed in O(n® log® n) time.

The main difficulty in improving this result is that X*(¢) =
X (o7, t), where ¢; denotes an optimal matching for horizontal
translation ¢, is not unimodal. Therefore X* may have several lo-
cal minima, which means we cannot use a binary search to find an
optimal translation t*. Instead, we have to compute a matching for
all translations in 7T'.

Minimising L, under scaling. For scaling we can use the same
procedure as for translation: we prove that there is an optimal scal-
ing that x-aligns and y-aligns A and B and does not increase the
total distance. We again have a set of at most n* scalings that is
guaranteed to contain an optimal scaling. Hence:

Theorem 2. Given two sets A and B of n points in the plane, a
one-to-one matching ¢, and a scaling * that minimise D can
be computed in O(n%log® n) time.

Minimising L, under both translation and scaling. We can use
same the approach, but now we z-align (y-align) two distinct pairs
of points. We obtain:

Theorem 3. Given two sets A and B of n points in the plane, a
one-to-one matching ¢, a translation t*, and a scaling * that
minimise D can be computed in O(n'° log® n) time.

Proof. Analogous to the proof of Lemma 1 we can show that
X'(t,\) = X(¢,t, \) has its minimum at a breakpoint (£, \). This
again corresponds to z-aligning a point & with ¢(a). What remains
to show is that there is a second point a’ that we can x-align with
¢(a’). Ttis easy to see that if there is only one pair of points z-
aligned, say @ and ¢(a), there are a translation ¢’ and scaling \’
that will keep & z-aligned with ¢ (@) and minimise the total dis-
tance between {Aa + £ | a € A\ {a}} and B\ {¢(a)}. Using
the same argument as before it follows that this distance is small-
est when we z-align a point a’ with ¢(a’). We conclude that there
is a translation ¢*, namely the combination of £ and ¢, and a scal-
ing, namely the combination of A and X', that minimises X’ and
z-aligns two pairs of points. This completes the proof. O

Using that B is a grid. The above results all hold for arbitrary
sets of points A and B in the plane. However, for our grid maps
we can use that the points in B are grid points of a regular grid.
Any two points by, b2 in the same column of the grid have the same
x-coordinate. So z-aligning a point @ € A with b; has the same
effect as z-aligning a with b2. The same holds for any two points
in the same row. Hence, we can improve the running time of our
algorithms slightly:

northwest | northeast e A,
a1 -~ southwest ay
4
a/

southeast 2

southwest | southeast

az
(2) (b)

Figure 4: (a) The areas in the plane corresponding to each direc-
tion. (b) The directional relation between a; and az is not preserved,
(a1, a2) is an z-inversion.

Corollary 1. Given a set A of n points in the plane and a set
B of n grid points on an R x C' grid of size n, a minimum L -
distance matching under translation or scaling can be computed
in O(nCnR - n*log®n) = O(n®log®n) time. A minimum L-
distance matching under translation and scaling can be computed
in O(n®log®n) time.

2.2 Preserving Directional Relations

The third criterion that we consider is preserving directional rela-
tions. Let A and B be two sets of n points in which no two points
have the same z- or y-coordinate (note that this is not the case when
B is a grid), and let dir(p, q) denote the directional relation of ¢
with respect to p (see Fig. 4 (a)). The goal is now to find a matching
¢": A — B that maximises the number of pairs (a1,a2) € A x A
for which dir(a1,a2) = dir(¢*(a1),¢*(az)). Stated differently,
we are looking for a matching ¢* that minimises the number of
out-of-order pairs W defined as

W(¢) = [{(a1,a2) | (a1,a2) € Ax AN
dir(a1, a2) # dir(¢(a1), ¢(az))}|-

To avoid many nested brackets we will write a’ = ¢(a) from now
on. Furthermore, we observe that translations and scalings do not
influence W.

A 4-approximation algorithm for minimising W. We now de-
scribe an algorithm to compute a matching that approximately min-
imises W. Let z-rankp(p) denote the z-rank of point p € P, that
is, the number of points in P to the left of p. For points p € P
and ¢ € Q we write p < q for z-rankp(p) < x-rankq(q). The
y-rank and <, are defined analogously.

For a given matching, (a1, a2) € A X A is an x-inversion if (and
only if) a1 < a2 and a} =, ah, or az <, a1 and ab =, aj.
See Fig. 4 (b). Similarly we define a y-inversion. An inversion is
an z-inversion, a y-inversion or both. We denote the number of x-
inversions and the number of y-inversions of matching ¢ by I (¢)
and I,,(¢), respectively. It is easy to see that there is a one-to-one
correspondence between the number of out-of-order pairs W (¢) of
matching ¢ and the number of inversions I(¢), i.e. W(¢) = I(¢).

We define a distance measure w between points a € A and
be B:

w(a,b) = |z-ranka(a) — z-rankp (b)| +
|y-ranka(a) — y-rankgs (b)|.

We now compute a minimum distance matching ¢ with w as dis-
tance measure. The distance measure w is simply the L;-distance
on the ranks of the points, which means we can use Vaidya’s algo-
rithm [12] to compute ¢. Let D(¢) again denote the total distance
of matching ¢, then we can prove that the matching that minimizes
D is a 4-approximation algorithm for minimizing W:

Theorem 4. Given two sets A and B of n points in the plane,
we can compute a one-to-one matching ¢ where W(¢) < 4 -
ming+ce W(¢*) in O(n?log®n) time.

The proof of this theorem can be found in a forthcoming ex-
tended version of the paper.

2.3 Implementation

We implemented a tool that computes an R x C grid map G of a
given input map M for a specified number R of rows and C' of
columns. The tool itself is implemented in Scala, and uses Ipsolve
[2] to solve the underlying point set matching problems. The global
approach is as follows.

We start by constructing an (empty) R x C grid, in which the
grid cells have heights and widths such that G and M have the
same (size) bounding box. For each of the regions and each of the
grid cells we compute its centroid, thus obtaining the sets of points
A and B. We then generate all horizontal transformations (trans-
lations or scalings): one for each pair consisting of a point in A
and a column in the grid. Analogously, we generate all vertical
transformations. By combining the horizontal and vertical trans-
formations we obtain a set T of O(n?) transformations. For each
of these transformations in turn, we apply the transformation on A,
and compute a minimum distance matching between the resulting
set and B. We pick the matching that minimizes the distance over
all transformations in 7', and use it to map each region in M onto
acellin G.

The point set matchings can be solved using linear program-
ming, in particular by using Vaidya’s algorithm [12]. However,
for our implementation we use the following simpler, but slower,
LP-formulation, which we solve using Ipsolve [2].

Let A and B be two sets of n points in the plane. We say each
point a € A has a supply of one, and each point b € B has a
demand of one. A point a € A can supply exactly one pointb € B
for a cost of d(a,b). We model this by variable fqs denoting the
supply, or flow, from a to b. The objective is to find an assignment
of the flow that minimises the weighted total cost. This yields the
following linear program:

minimize Z Z favd(a, b)

acAbeB
subject to:
> fa=1 Va e A
beB
> far =1 Vb e B
acA
0< far <1 Ya € A,b € B

Since all supplies and demands have integer values it can be
shown that all variables in the optimal flow f,; also have integer
values [8]. This means that f,;, represents a one-to-one matching
¢ € O that matches a to b if and only if f,, = 1. Thus, the objec-
tive function expresses the total distance Dy (¢). It follows that the
matching computed by this linear program minimises Dy.

In case matching the points a1 to by and as to b2 yields the same
L -distance as matching a; to bz and a2 to by (note that this is not a
degenerate case), we make sure our tool chooses the matching that
minimises the maximum distance.

If we wish to match A to a set B with m > n points, that is,
we allow empty grid cells, we can relax the second constraint to

ZaEA fab S 1.

3 EVALUATION

In this section we give an experimental evaluation of our methods.
We compare the results from the different distance based methods
to each other, and to a method based on spatial treemaps by Wood
and Dykes [16]. To determine the quality of the resulting grid maps
we measure the distance between the point sets after translation, the
number and percentage of preserved adjacencies, and the number
and percentage of preserved directional relations. When we count
the number of directional relations we consider points mapped to
the same row (column) to have the correct north-south (east-west)
relationship. Two regions or grid cells are adjacent if the intersec-
tion of their closed boundaries is nonempty. In particular this means
each grid cell has at most eight neighbours.

Additionally, we use a qualitative analysis based on the colouring
of the regions. Similar to Wood and Dykes [16], we map a CIE
L*a*b* colour space with L* = 50 onto the input map. Each
region is assigned the colour of its centroid. The same colour is
used for the grid cell corresponding to this region. The idea is that in
a good grid map the colour changes gradually, as it does in the input
map. This indicates the relative positions in the grid are similar to
those in the input map.

The matchings that we consider in our evaluation are: (i) a
matching that minimises the Li-distance without translation or
scaling (i.e. Dy), (ii) a matching that minimises the L,-distance
under translation, (i.e. D7), (iii) a matching that approximates the
minimum number of out of order pairs W, and (iv) a matching that
minimises the total L3-distance under translation. This last match-
ing is due to Cohen and Guibas [6]. Minimising the L, -distance un-
der (only) scaling yields similar results to minimising under (only)
translation, so we do not show the results here. Computing a min-
imum distance matching under both translation and scaling was
computationally unfeasible. In the remainder of this section we
refer to the last three methods by L1, W, and L3. The method that
minimises Dy is simply called .

We compare results of the distance based methods with a modi-
fied version of Wood and Dykes’s spatial treemaps [16]. The modi-
fications make sure the result is a grid map, rather than an arbitrary
spatial treemap. The algorithm recursively processes the cells in-
cident to a shortest side of the grid. That is, it processes a single
row or column of the grid. For each of these cells in turn it finds
the point a € A that is closest to its centroid b € B. This pair is
added to the matching. The remaining grid cells again form grid,
one that is exactly one row or column smaller than before, which is
processed recursively. We refer to this method as SpatialGrid.

We focus our evaluation on the quality of the resulting grid maps,
rather than on the running time of the algorithms. For the maps pre-
sented here the entire tool takes only a few seconds when using the
SpatialGrid, I, W, or L3 method. So computing a single minimum
distance matching takes roughly the same amount of time as the
greedy algorithm used in the SpatialGrid method. The L; method
however requires the computation of very many minimum distance
matchings. Therefore it is significantly slower than the other meth-
ods. For the larger maps the L, method already takes several hours.

United States. We use our algorithms to construct a grid map of the
United States. To prevent artificially inflating the bounding box of
the map we consider only the 48 contiguous states. Fig. 5 shows the
resulting grid map for each of the methods, and Table 1 contains the
measurements. We can see that the L1 and L% methods minimise
their respective distances. The I, SpatialGrid, and W methods have
a much larger total distance. What is perhaps somewhat surprising
is that the I method has a smaller L;-distance than the Spatial-
Grid method, but if we use the L3-distance then SpatialGrid has
a smaller total distance. Most likely, this is since the L3-distance
is more sensitive to large differences in a single component of the
distance. Consider for example Florida (FL). In the I method the
x-component of the distance between the Florida and its grid cell

=
. H
=
=2
H
H
I
H
3
=
m
H
>

z
<
X

HEEE
El ==

<
x

=

O =z

>
N

E
R
!

%)
H
H
H

=4
'
=

I
=

>

o
ul

o
N

o)

>

'
) > =

z =

A

-

a

> c =z
N > =

Figure 5: The results of the three methods on the contiguous states of the US.

Method Distance Directional Rel. Adjacencies
L, Lo 2 # % # %
SpatialGrid (Wood and Dykes [16]) 4545 3592 300482 2008 89.01% 77 73.33%
1 4035 3342 311327 2024 89.72% 79 75.24%
L, 2838 2355 166060 2046 90.69% 78 74.29%
w 4221 3352 273273 2098 93.00% 79 75.24%
3 2929 2260 139110 2096 92.91% 83 79.05%

Table 1: United States.

is quite large (i.e. larger than in the grid map corresponding to Spa-
tialGrid). This has a much larger influence on the L3-distance than
on the L;-distance.

The 4-approximation algorithm for minimising W preserves
most directional relations: 93% of the pairs of points in A have
the correct directional relation. The W method is closely followed
by the L2 method. The method that preserves the least directional
relations is SpatialGrid. This is still 89%. Almost all methods pre-
serve around 74% of the adjacencies. The L3 method performs a
bit better here, preserving 79% of the adjacencies.

The grid maps in Fig. 5 confirm the quantitative results. The
grid map corresponding to the SpatialGrid method has a few places
where cells seem out of place. In particular, the group of cells IL,
OH, WI, MI (in the middle of the two topmost rows). The grid
maps for the [and L1 methods also show some out of order cells.
For the I method most notably the cells corresponding to CO, and
CA. In the L; grid map those corresponding to NJ and DE. The grid
maps for the T and L3 methods show the most natural changes of
colours, indicating the least distortions.

France. We also use our methods on 96 departments of France. The
resulting grid maps are shown in Fig. 6. The quantitative results can
be found in Table 2. For the total distance of the matchings we see
similar results to those of the US. The L; and L2 methods have the
smallest distances, the distance of the "W method is somewhat sim-
ilar to that of I, and SpatialGrid has the largest distance. We again

see that the W and L3 methods preserve most directional relations.
In this case almost all pairs of points have their correct directional
relation: around 97%. The L; and I methods also perform very
well, preserving roughly 95% of the correct directional relations.
SpatialGrid performs significantly worse: preserving only 88% of
the directional relations. If we look at the grid map corresponding
to SpatialGrid in Fig. 6 we can see three cells in the top right cor-
ner which should have been much further to the southwest. This
problem is due to the greedy matching scheme. The point (region)
a € A matched to such a cell was never the point closest to any
other cell, and hence when we are processing these last cells these
points a are the only points left that we can match to.

In terms of the number of preserved adjacencies we can also see
that SpatialGrid does not perform well. The same applies for the
I method. Both preserve only 69% of the adjacencies, whereas
the L1 and L3 methods manage to preserve 76% and 80% of the
adjacencies, respectively. The W method even manages to preserve
83% of the adjacencies.

The grid map with the smoothest color changes is again the one
corresponding to the L3 method. Both the I and L; methods show
a natural change in color as well. The grid map corresponding to
W shows an out of place green cell in the bottom-left, and places
the two most purple cells corresponding to Corsica a bit further to
the west than we would expect them.

DENNNREEE

I
Ly

SpatialGrid (Wood and Dykes [13])

.
I

W Lj
Figure 6: The results of the three methods on the 96 departments in France.

Method Distance Directional Rel. Adjacencies

L, Ly L3 # % # %
SpatialGrid (Wood and Dykes [16]) 10666 8094 1066752 8040 88.16% 166 69.46%
1 9161 7462 698697 8620 94.52% 165 69.04%
L1 8622 7086 654457 8718 95.59% 183 76.57%
w 9359 7167 647438 8874 97.30% 197 82.43%
3 8875 6889 595280 8894 97.52% 193 80.75%

Table 2: France.

London boroughs. Finally, we compute grid maps for the 33 Lon-
don boroughs. We use a 6 x6 grid in which we manually specified
which cells (not) to use. Recall that the SpatialGrid method is an
adaptation of a method of Wood and Dykes to produce a spatial
treemap, and that spatial tree map contains no empty spaces. There
are many possible ways to incorporate empty cells in our adapta-
tion of the algorithm. However, none of these ways is obviously
the right one, and each option to deal with empty cells gives dif-
ferent results, making the choice rather arbitrary. Therefore, we
only compare the results of the four matching-based methods. The
results can be found in Table 3 and Fig. 7. The results are some-
what similar to those of the United States and France. In terms of
preserved directional relations and adjacencies the L; method per-
forms a bit worse than before. However, if we look at the colours of
the grid maps in Fig. 7 the grid map for the L;-method still shows
a very natural gradient. The W method seems to perform best on
this input map. Both the W method as the L3 method preserve
the most directional relations and adjacencies, but the grid map for

W has a slight edge over those of the I and L3 methods. This is
mainly because of the positioning of the orange and dark-red cells
in the upper right corner of the grid maps.

4 CONCLUDING REMARKS

We studied grid maps: a schematic representation of the regions of
a normal map where every region corresponds one-to-one to a grid
cell. To compute the correspondence between the regions and grid
cells we investigated point set matching problems between two sets
A and B of n points in the plane. To obtain a good grid map we
considered three optimisation criteria. One of these criteria, max-
imising the number of adjacencies that the matching preserves, is
NP-hard. For one of the other criteria, minimising the sum of L-
distances between matched points under translation and/or scaling,
we gave polynomial-time algorithms. For the last criterion, max-
imising the number of pairs of points in A for which the matching
preserves the directional relation, we gave a 4-approximation algo-
rithm. We implemented our methods and evaluated them on several

Figure 7: The results of the three methods on the London boroughs.

Method Distance Directional Rel. Adjacencies
L, Lo 3 # % # %

1 2897 2296 182257 1040 98.48% 59 72.84%

Ly 2803 2286 200593 1008 95.45% 54 66.67%

w 2936 2277 177927 1042 98.67% 61 75.31%

L3 2890 2228 172089 1042 98.67% 61 75.31%

Table 3: London boroughs.

maps. The results of the three methods are comparable and gener-
ally good. In all considered maps our distance-based methods pro-
duce better grid maps than previous methods. Our experiments also
confirm our hypothesis that the methods using a minimum distance
matching will preserve many directional relations and adjacencies.

In our setting the grid with the correct number of cells is given
as part of the input. An interesting problem that remains is to de-
termine which grid cells of a slightly too large grid to use. If the
matching algorithm makes the decision, we may have unused grid
cells in the middle. For most of our maps the minimum LZ-distance
matching under translation gives (one of) the best results. Hence it
would be interesting to try to minimise the L3-distance under scal-
ing as well. Another open problem is related to preserving the di-
rectional relations. The complexity of optimising this criterion is
not known, and it may be possible to obtain a better approximation
factor or a polynomial-time approximation scheme.

ACKNOWLEDGEMENTS

The authors are grateful to Jason Dykes and Jo Wood for their com-
ments on an earlier version of this paper and for providing insight
in their spatial treemap implementation. This research was sup-
ported in part by the Netherlands Organisation for Scientific Re-
search (NWO) under project no. 639.022.707 and 612.001.022, the
National Science Foundation under grant 0830403, and by the Of-
fice of Naval Research under MURI grant N00014-08-1-1015.

REFERENCES

[1] H. Alt and L. Guibas. Discrete geometric shapes: Matching,
interpolation, and approximation. In Handbook of Computa-
tional Geometry, chapter 3, pages 121-153. Elsevier, 1996.

[2] M. Berkelaar, K. Eikland, P. Notebaert, et al. Ipsolve: Open
source (mixed-integer) linear programming system, 2010.
URL http://1lpsolve.sourceforge.net/.

[3] E-J. Brandenburg. On the complexity of optimal drawings of
graphs. In WG, volume 411 of Lecture Notes in Computer
Science, pages 166—180. Springer, 1989.

[4] S.Cabello, H. Haverkort, M. van Kreveld, and B. Speckmann.
Algorithmic aspects of proportional symbol maps. Algorith-
mica, 58(3):543-565, 2010.

[5] W. Cleveland. The Elements of Graphing Data. AT&T Bell
Laboratories, 1994.

[6] S. Cohen and L. Guibas. The earth mover’s distance under
transformation sets. In Proc. 7th IEEE International Confer-
ence on Computer Vision, volume 2, pages 1076 —1083, 1999.

[7] A.Efrat, A. Itai, and M. J. Katz. Geometry helps in bottleneck
matching and related problems. Algorithmica, 31:1-28, 2001.

[8] F. Hillier and G. Lieberman. Introduction to Mathematical
Programming. McGraw-Hill, 1990.

[9] A. Slingsby, M. Kelly, J. Wood, and J. Dykes. OD maps
for studying historical internal migration in Ireland. In Proc.
IEEE Conference on Information Visualization, pages 239—
251, 2011.

[10] T. Slocum, R. McMaster, F. Kessler, and H. Howard. The-
matic Cartography and Geovisualization. Pearson Prentice
Hall, second edition edition, 2009.

[11] B. Speckmann and K. Verbeek. Necklace maps. IEEE Trans-
actions on Visualization and Computer Graphics, 16(6):881—
889, 2010.

[12] P. Vaidya. Geometry helps in matching. SIAM Journal on
Computing, 18(6):1201-1225, 1989.

[13] M. van Kreveld, E. Schramm, and A. Wolff. Algorithms for
the placement of diagrams on maps. In Proc. 12th Interna-
tional Symposium on Advances in Geographic Information
Systems, pages 222-231. ACM, 2004.

[14] R. Veltkamp and M. Hagedoorn. State of the Art in Shape
Matching. In Principles of Visual Information Retrieval,
chapter 4, pages 87 — 115. Springer, 2001.

[15] A. Voorhees. A general theory of traffic movement. Institute
of Traffic Engineers, pages 46-56, 1955.

[16] J. Wood and J. Dykes. Spatially ordered treemaps. [EEE
Transactions on Visualization and Computer Graphics, 14(6):
1348-1355, 2008.

[17] J. Wood, J. Dykes, and A. Slingsby. Visualisation of origins,
destinations and flows with OD maps. The Cartographic Jour-
nal, 47(2):117-129, 2010.

[18] J. Wood, A. Slingsby, and J. Dykes. Visualizing the dynamics
of London’s bicycle hire scheme. Cartographica, 46:239—
251, 2011.

