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Visualising Data

Given a map with n regions we want to show data for each region.
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Visualising Data

Given a map with n regions we want to show data for each region.

Desired properties:

• easy to read,

• easy to find the data for a
given region,

• easy to compare for multiple
regions, and

• the usable for both scalar
values and multi-variate data.
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Visualising Data

Given a map with n regions we want to show data for each region.
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Visualisation Techniques

Use a choropleth map: colour the regions according to the data.

Problem: Difficult to compare.
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Visualisation Techniques

Use a choropleth map: colour the regions according to the data.

Problem: Difficult to compare.
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Visualisation Techniques

Use a cartogram: scale the region according to the data.

Problems: Hard to recognise regions, difficult to compare.
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Visualisation Techniques

Use a cartogram: scale the region according to the data.

Problems: Hard to recognise regions, difficult to compare.
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Visualisation Techniques

Use a symbol map: show a symbol/graphic to represent the data.

Problem: Adding symbols clutters the view.
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Visualisation Techniques

Use a symbol map: show a symbol/graphic to represent the data.
Problem: Adding symbols clutters the view.
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Visualisation Techniques

Idea: Add the symbols/graphics in a regular grid. The position in
the grid corresponds with geographic location in the map.
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Visualisation Techniques

Related work: Spatially Ordered Treemaps wood2008spatially
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Visualisation Techniques

Model the problem as a Pointset Matching Problem.
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Visualisation Techniques

We represent each region in the map by blue point. This yields the
set of blue points A.
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Visualisation Techniques

We represent each grid cell by a red point. This yields the set of red
points B.
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Visualisation Techniques

Goal: Find the “best” 1-1 matching φ : A→ B.
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Finding the “best” matching

The matching φ should:

• minimise the total distance,

• preserve the directional
relation, and

• preserve adjacencies

a1 a2

b2b1

To get the best matching we allow translation and scaling of the
pointset A.
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Finding the “best” matching

The matching φ should:

• minimise the total distance,

• preserve the directional
relation, and

• preserve adjacencies

NE

a1

a2

φ(a2)

φ(a1)

NE

To get the best matching we allow translation and scaling of the
pointset A.
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Finding the “best” matching

The matching φ should:

• minimise the total distance,

• preserve the directional
relation, and

• preserve adjacencies

a1 a2

b2b1

To get the best matching we allow translation and scaling of the
pointset A.
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Modelling distance

For a 1-1 matching φ between A and B we define:

DI (φ) =
∑
a∈A

d(a, φ(a))

where d is a distance metric.

We will consider d = L1, and d = L2
2.

Let Φ be the set of all 1-1 matchings between A and B.

We then want a 1-1 matching φ∗ such that:

DI (φ
∗) = min

φ∈Φ
DI (φ)
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Minimising DI

Question: How can we find a matching φ that minimises DI ?

Answer: Use Linear Programming. Let fab denote the flow from a
to b.

minimize
∑
a∈A

∑
b∈B

fabd(a, b)

subject to:

∑
b∈B

fab = 1 ∀a ∈ A∑
a∈A

fab = 1 ∀b ∈ B

0 ≤ fab ≤ 1 ∀a ∈ A, b ∈ B
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Minimising DI
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Answer: Use Linear Programming. Let fab denote the flow from a
to b.

minimize
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b∈B
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Minimising DI

Analysis: This LP is an instance of the assignment problem.

Theorem

Given two sets A and B of n points in the plane, a one-to-one
matching φ that minimises DI can be computed in O(n3) time.

Theorem (vaidya1988geometry)

Given two sets A and B of n points in the plane, a one-to-one
matching φ that minimises DI with d = L1 can be computed in
O(n2(log n)3) time.
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Modelling distance II

For a 1-1 matching φ between A and B we define: and a
translation t

DI (φ) =
∑
a∈A

d(a, φ(a))

We now want a 1-1 matching φ∗ and a translation t∗ such that:

DT (φ∗, t∗) = min
φ∈Φ,t∈T

DT (φ, t)

Frank Staals Geographic Grid Embeddings



Modelling distance II

For a 1-1 matching φ between A and B and a translation t we
define:

DT (φ, t) =
∑
a∈A

d(a + t, φ(a))

We now want a 1-1 matching φ∗ and a translation t∗ such that:

DT (φ∗, t∗) = min
φ∈Φ,t∈T

DT (φ, t)
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Modelling distance II

For a 1-1 matching φ between A and B and a translation t we
define:

DT (φ, t) =
∑
a∈A

d(a + t, φ(a))

We now want a 1-1 matching φ∗ and a translation t∗ such that:

DT (φ∗, t∗) = min
φ∈Φ,t∈T

DT (φ, t)
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Minimising DT with the L1 distance

Frank Staals Geographic Grid Embeddings



Minimising DT with the L1 distance

Frank Staals Geographic Grid Embeddings



Minimising DT with the L1 distance
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Minimising DT with the L1 distance

Lemma

Let A and B be two non x-aligned sets of n points in the plane,
and let φ be a one-to-one matching between A and B. Then there
is a horizontal translation t∗ such that A∗ = {a + t∗ | a ∈ A} and
B are x-aligned and DT (φ, t∗) ≤ DI (φ).

Symmetrically we can show that there is a vertical translation t∗

that y-aligns two point sets A and B

There is a translation t that both x-aligns and y-aligns A and B
and minimises DT .

=⇒ We have to consider at most n4 translations.
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Minimising DT with the L1 distance

Theorem

Given two sets A and B of n points in the plane, a one-to-one
matching φ and translation t that minimise DT can be computed
in O(n6(log n)3) time.
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Minimising DT with the L1 distance

a

b1

Corollary

Given a set A of n points in the plane and a set B of n grid points
in an R × C grid, a one-to-one matching φ and translation t that
minimise DT can be computed in
O(nCnR · n2(log n)3) = O(n5(log n)3) time.
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Minimising DT with the L1 distance

a

b1

b2

Corollary
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Modelling distance III

For a 1-1 matching φ between A and B and a translation t we
define:

DT (φ, t) =
∑
a∈A

d(a + t, φ(a))

We now want a 1-1 matching φ∗ and a scaling λ∗ such that:

DΛ(φ∗, λ∗) = min
φ∈Φ,λ∈Λ

DΛ(φ, λ)
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Modelling distance III

For a 1-1 matching φ between A and B and a scaling λ we define:
tion

DΛ(φ, λ) =
∑
a∈A

d(λa, φ(a))

We now want a 1-1 matching φ∗ and a scaling λ∗ such that:

DΛ(φ∗, λ∗) = min
φ∈Φ,λ∈Λ

DΛ(φ, λ)
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Modelling distance III

For a 1-1 matching φ between A and B and a scaling λ we define:
tion
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∑
a∈A

d(λa, φ(a))
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Minimising DΛ with the L1 distance

Idea: Use the same approach as with translation...

Theorem

Given two sets A and B of n points in the plane, a one-to-one
matching φ and scaling λ that minimise DΛ can be computed in
O(n6(log n)3) time.

Corollary

Given a set A of n points in the plane and a set B of n grid points
in an R × C grid, a one-to-one matching φ and scaling λ that
minimise DΛ can be computed in
O(nCnR · n2(log n)3) = O(n5(log n)3) time.
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Modelling distance IIII

For a 1-1 matching φ between A and B, a translation t, and a
scaling λ we define:

D(φ, t, λ) =
∑
a∈A

d(λa + t, φ(a))

We now want a 1-1 matching φ∗, a translation t∗, and a scaling λ∗

such that:

DΛ(φ∗, t∗, λ∗) = min
φ∈Φ,t∈T ,λ∈Λ

D(φ, t, λ)
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Modelling distance IIII
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Minimising D with the L1 distance

Idea: If one transformation can x-align one pair of points then
two transformations can x-align two pairs of points.

tx = |bx − ax |
λx = |b′x − a′x |

Problem: There is only a unique solution if ax , a
′
x , bx , and b′x are

independent. This is not necessarily the case in our setting!
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Minimising DT and DΛ with the L2
2 distance

Theorem (By cohen1999earth)

The translation that aligns the centroids of A and B minimises DT .

So only one translation to consider.

Question: How about minimising DΛ?

Answer: Does not work...
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Finding the “best” matching

The matching φ should:

• minimise the total distance,

• preserve the directional
relation, and

• preserve adjacencies a

φ(a)

To get the best matching we allow translation and scaling of the
pointset A.
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Problem Definition

Given the dual graph of the regions G = (A,E ) and the dual graph
of the grid H = (B,Z ) find an embedding φ : G ↪→ H that
maximises the number of preserved adjacencies from G .

Given two graphs G = (A,E ) and H = (B,Z ), find
the maximal size subsets E ′ ⊆ E and Z ′ ⊆ Z such
that (A,E ′) and (B,Z ′) are isomorphic.

Problem: Maximum Common Edge Subgraph is
NP-complete.

Frank Staals Geographic Grid Embeddings



Problem Definition

Given the dual graph of the regions G = (A,E ) and the dual graph
of the grid H = (B,Z ) find an embedding φ : G ↪→ H that
maximises the number of preserved adjacencies from G .

Given two graphs G = (A,E ) and H = (B,Z ), find
the maximal size subsets E ′ ⊆ E and Z ′ ⊆ Z such
that (A,E ′) and (B,Z ′) are isomorphic.

Problem: Maximum Common Edge Subgraph is
NP-complete.

Frank Staals Geographic Grid Embeddings



Problem Definition

Given the dual graph of the regions G = (A,E ) and the dual graph
of the grid H = (B,Z ) find an embedding φ : G ↪→ H that
maximises the number of preserved adjacencies from G .

Maximum Common Edge Subgraph
Given two graphs G = (A,E ) and H = (B,Z ), find
the maximal size subsets E ′ ⊆ E and Z ′ ⊆ Z such
that (A,E ′) and (B,Z ′) are isomorphic.

Problem: Maximum Common Edge Subgraph is
NP-complete.
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Problem Definition

Adjacency Preserving Grid Embedding
Given a planar graph G = (V ,E ) and a grid graph
H = (N,Z ) with |V | = |N|, is it possible to find an
embedding φ : G ↪→ H that preserves at least k
adjacencies from G?
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3-Partition is strongly NP-complete:

NP-hard even if all x ∈ X bounded by a polynomial in n.
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NP-Completeness Proof

Given X , construct a grid graph H and a graph G = (V ,E ) such
that:

φ preserves |E | edges ⇐⇒ X has a 3-partition
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NP-Completeness Proof

3n+ 21

R

1

H is a grid graph with
3n + 2 columns and
R = max(w + 4, 3n + 3)
rows.
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NP-Completeness Proof

2

w + 3

3 3n

G consists of 3n + 1
components:

• a separator S

• for each x ∈ X a
chain C (x)

G is polynomial in size.
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NP-Completeness Proof

C(5)

G consists of 3n + 1
components:

• a separator S

• for each x ∈ X a
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NP-Completeness Proof

Suppose φ preserves all
|E | edges.

=⇒
There are only 2
placements possible for S .
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There are only 2
placements possible for S .
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NP-Completeness Proof

Suppose φ preserves all
|E | edges.

=⇒
C (x) placed in a single
column.

Frank Staals Geographic Grid Embeddings



NP-Completeness Proof

Suppose φ preserves all
|E | edges.

=⇒
φ yields a valid 3-partition
of X .
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Algorithms for preserving adjacencies

• Use an Maximum Common Subgraph algorithm. For
example mcgregor1982backtrack’s algorithm.

=⇒ Too
slow!

• Approximate.

Problem: kann1992approximability shows a lot of Maximum
Sommon Subgraph problems are NP-hard to approximate.

We designed a 4-approximation algorithm to embed a planar graph
into a grid graph.
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Finding the “best” matching

The matching φ should:

• minimise the total distance,

• preserve the directional
relation, and

• preserve adjacencies

NE

a1

a2

φ(a2)

φ(a1)

NE

To get the best matching we allow translation and scaling of the
pointset A.
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Approximating directional relations

Algorithm DirRel-Preserve

1 Let w(a, b) denote the number of pairs involving a with the
wrong directional relation if we match a to b.

2 Compute a minimal distance matching using w as distance
measure.

Conjecture

DirRel-Preserve is a 4-approximation algorithm.
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Results for different measures

L22

L1 scaleL1 trans

adjacency

L22:
directional relation ≈ 79%
adjacencies ≈ 54%

adjacency:
directional relation ≈ 13%
adjacencies ≈ 36%
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Results for different measures

L22

L1 trans L1 scale

adjacency
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Results for different grid sizes

12×8 8×12

16×6 6×16 24×4
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Results for different grid sizes

12×8 8×12

4×24 32×3 3×32

Frank Staals Geographic Grid Embeddings



Results for different grid sizes

12×8 8×12

48×2 2×48 96×1
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Examples

1 electoral vote

Obama
McCain

other

U.S. Presidential Elections 2008

AL

AK

AZ

ARCA

CO

CT

DE

FLGA

HI

ID

IL IN

IA

KS KY

LA

ME

MD

MAMI

MN

MS

MO

MT

NENV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY
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Examples

AL

AK

AZ

ARCA

CO

CT

DE

FLGA

HI

ID

IL IN

IA

KS KY

LA

ME

MD

MAMI

MN

MS

MO

MT

NENV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

Am. Indian and Alaska Native
Asian

Black or African Am.
Pacific Islander

Two or More Races
White

U.S. Population estimates in 2009 per race

Frank Staals Geographic Grid Embeddings



Future Work

• Directional Relations proof

• How to optimise all three criteria?

• How to pick a suitable set of grid cells?

• . . .

3×11 6×6

{(1, 1), (1, 6), (6, 1)} {(1, 1), (6, 1), (6, 6)}{(1, 1), (1, 2), (1, 6)}{(1, 1), (1, 6), (2, 6)}

{(1, 1), (2, 1), (3, 1)} {(1, 1), (1, 2), (2, 1)}
6×6

6×66×66×66×6

Thank you! Questions?
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