
Maximum Physically Consistent Trajectories
Bram Custers

b.a.custers@tue.nl

TU Eindhoven, the Netherlands

Mees van de Kerkhof

m.a.vandekerkhof@uu.nl

Utrecht University, the Netherlands

Wouter Meulemans

w.meulemans@tue.nl

TU Eindhoven, the Netherlands

Bettina Speckmann

b.speckmann@tue.nl

TU Eindhoven, the Netherlands

Frank Staals

f.staals@uu.nl

Utrecht University, the Netherlands

ABSTRACT
Trajectories are usually collected with physical sensors, which are

prone to errors and cause outliers in the data. We aim to identify

such outliers via the physical properties of the tracked entity, that

is, we consider its physical possibility to visit combinations of mea-

surements. We describe optimal algorithms to compute maximum

subsequences of measurements that are consistent with (simplified)

physics models. Our results are output-sensitive with respect to the

number k of outliers in a trajectory of n measurements. Specifically,

we describe an O(n logn log2 k) time algorithm for 2D trajectories

using a model with unbounded acceleration but bounded veloc-

ity, and an O(nk) time algorithm for any model where consistency

is “concatenable”: a consistent subsequence that ends where an-

other begins together form a consistent sequence. We also consider

acceleration-bounded models which are not concatenable. We show

how to compute the maximum subsequence for such models in

O(nk2 logk) time, under appropriate realism conditions. Finally,

we experimentally explore the performance of our algorithms on

several large real-world sets of trajectories. Our experiments show

that we are generally able to retain larger fractions of noisy trajec-

tories than previous work and simpler greedy approaches. We also

observe that the speed-bounded model may in practice approximate

the acceleration-bounded model quite well, though we observed

some variation between datasets.

CCS CONCEPTS
• Theory of computation→ Computational geometry.

KEYWORDS
outlier detection, algorithms, physics models, experiments

ACM Reference Format:
Bram Custers, Mees van de Kerkhof, Wouter Meulemans, Bettina Speck-

mann, and Frank Staals. 2019. Maximum Physically Consistent Trajectories.

In 27th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (SIGSPATIAL ’19), November 5–8, 2019, Chicago, IL, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3347146.3359363

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6909-1/19/11. . . $15.00

https://doi.org/10.1145/3347146.3359363

1 INTRODUCTION
Trajectories – sequences of time-stamped locations representing the

motion of an entity – are among the most frequently collected types

of spatio-temporal data. Consequently, there are myriad analysis

techniques that use trajectories as their input. However, many ways

to collect trajectories involve physical sensors which are prone

to errors. For example, GPS readings notoriously stray far from

their real location in urban canyons, resulting in trajectories with

multiple significant outliers. These outliers pose problems for many

analysis techniques such as clustering or grouping, and they skew

the results of statistical methods. Hence, it is common practice to

try to eliminate outliers in a preprocessing step.

There are a variety of methods to remove outliers. Some, such as

smoothing or averaging the data, have a possibly negative impact

on the complete trajectory. Others, such as map matching, are

applicable only to trajectories that can be expected to coincide

with a road network. In this paper we focus on outlier detection,
that is, we describe algorithms that identify outliers which are

subsequently removed from the trajectory.

Specifically, we aim to identify outliers via the physical properties

of the moving (real-world) entity. We consider two measurements

within a trajectory to be consistent for a particular physics model

if the corresponding entity could have travelled between the two

measured locations in the time between the two measurements.

In this paper we present optimal algorithms to compute maximal

consistent subtrajectories according to different (simplified) physics

models. Before describing our results in more detail, we first intro-

duce the necessary notation and formally state the problem.

Notation. A trajectory T is a mapping from time to space that

represents the motion of an entity. However, recording devices typi-

cally record the position, and any other relevant information, of the

entity at discrete moments in time. Hence, a trajectory T is usually

stored as a sequence of time-stamped measurements ⟨p1, . . . ,pn⟩.
A measurement pi represents the position of the entity at time ti ,
and may contain additional information such as its velocity vi and

its acceleration ai at time ti . The measurements are ordered by

timestamp, so ti < tj if and only if i < j.
Let v

−
be the minimum speed, or velocity, that the entity can

achieve, and let v
+
be the maximum speed that the entity can

achieve. Similarly, let a− and a+ be the minimum and maximum

possible acceleration. These speed and acceleration bounds rep-

resent physical bounds, and thus the entity cannot exceed them

at any time, even in between consecutive time stamps ti and ti+1.
The actual continuous motion of an entity is assumed to be a con-

tinuous path π : [t , t ′] → Rd over time interval [t , t ′] through

https://doi.org/10.1145/3347146.3359363
https://doi.org/10.1145/3347146.3359363


SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA B. Custers, M. van de Kerkhof, W. Meulemans, B. Speckmann, and F. Staals

d-dimensional space (typically, d = 2). We say that a path π adheres
to the physics model if it never exceeds the bounds. For example, the

speed is always in [v−, v+] and the acceleration is always in [a−,a+].
A sequence of measurementsT = ⟨p1, . . . ,pn⟩ is consistent with the
physics model, denoted C(T ), if and only if there exists at least one

witness: a path π : [t1, tn ] → R
d
such that (i) for all i ∈ {1, . . . ,n},

π (ti ) coincides with location pi , and (ii) π adheres to the physics

model. We sometimes write C(pi ,pj ) instead of C(⟨pi ,pj ⟩).
We use subtrajectory or subsequence of a trajectory T to refer to

a subset of the measurements in the same order as in T ; note that
these measurements do not need to be consecutive in T .

Formal problem statement. Given a trajectory T and a physics

model, compute a maximum-size subsequence S of T such that S is

consistent with the given model. When S has size ℓ, the trajectory

T contains k = n − ℓ erroneous measurements or outliers.
Concatenability. Regardless of the physics model, if a sequence

T is consistent, then so is any subsequence S of T . But we cannot
necessarily construct a consistent subsequence from smaller ones:

the concatenation ⟨p1, . . . ,pn = q1, . . . ,qm⟩ of two consistent sub-

sequences T = ⟨p1, . . . ,pn⟩ and U = ⟨q1, . . . ,qm⟩ with pn = q1 is
not necessarily consistent. We call a physics model concatable if
this is the case. An example of a concatenable model is one that

limits only the speed of the entity. Concatenable models generally

allow more efficient algorithms.

Not all physics models are concatenable: for example, a model

limiting both the speed and the acceleration is not concatenable.

See Fig. 1 (left): both T = ⟨p1,p2⟩ and U = ⟨p2,p3⟩ are consistent,
but ⟨p1,p2,p3⟩ is not. The main problem is that sequencesU and T
essentially require the entity to have two different speeds at p2. The
two subtrajectoriesU and T are concatenable in the acceleration-

bounded model, under the condition that they have the same speed

at their common measurement. To capture this, we define a notion

of conditional consistency, denoted C(T | γ ), in which a trajectory

T is consistent, provided that it has a witness satisfying condition

γ . In case C(T | γ ) and C(U | γ ′) imply that the concatenation of

T and U is consistent, we say that the physics model is condition-
ally concatenable. Hence, the model with bounded acceleration is

conditionally concatenable, using the condition that the speed at

the common measurement is the same. The speeds attainable at a

certain measurement may depend on the subtrajectory so far (see

Fig. 1 (right)).

Results and organization.We present three algorithms and the

results of computational experiments investigating the efficacy of

t

x
p1

p2 p3

t

x

p4

p2

p3

p1

Figure 1: (Left) In an acceleration-bounded model ⟨p1,p2,p3⟩
is not consistent, even though ⟨p1,p2⟩ and ⟨p2,p3⟩ (and even
⟨p1,p3⟩) are. (Right) A consistent subtrajectory through p2
(red) may require a different speed at p4 than a subtrajectory
that includes p3 (blue).

our methods. Specifically, in Section 2, we describe a simple, opti-

mal algorithm that runs inO(nk) time for any concatenable physics

model allowing O(1) consistency checks between two measure-

ments. We then describe a more efficient algorithm which runs in

O(n logn log2 k) time, for the speed-bounded model in Section 3.

Our final algorithm, described in Section 4, uses an acceleration-

bounded model, that can optionally also bound the speed. This

algorithm runs in O(nk2 logk) time under mild assumptions, that

are validated by our experiments. We also present a variant of this

algorithm that introduces slack in the physics model to obtain an

efficient approximate algorithm that achieves the given worst-case

running time without assumptions.

In Section 5, we discuss the results of a series of computational

experiments on real-world data. Specifically, we compare the qual-

ity of our algorithms to simple greedy approaches and conclude that

our algorithms are more reliable, especially for trajectories with

more than minor levels of noise. We also observe that the speed-

bounded model approximates the acceleration-bounded model,

though there is some dependency on the dataset. Finally, we also

briefly investigate how sensitive our results are to the model pa-

rameters. We conclude with a discussion of our results in Section 6.

Related work. Outlier detection is necessary to cope with impre-

cise data. Hence, many different methods have been developed for

various contexts. A general survey of outlier detection is given

in [8]; see also [7] for a survey focusing on data with a temporal

component, including trajectories. For trajectories, outlier detection

has mainly focused on finding outlying trajectories in sets of tra-

jectories [6, 10, 11, 17], and not on finding outlying measurements

in one trajectory. At a glance, detecting outlying measurements

resembles trajectory simplification and trajectory smoothing, both

well-studied topics: refer to [18] for a survey. However, simplifi-

cation generally aims to minimize the number of measurements

while still accurately describing the trajectory: this typically retains

outliers as these are “salient”.

Physics models are often used in trajectory processing. Kalman

filtering, for example, is based upon a linear model for physical

motion; its extensions handle more complex, nonlinear models.

Note however, that Kalman filtering changes the measurement

positions rather than selecting a consistent subset. In a similar

vein, physics models are used to reconstruct trajectories from data,

replacing subtrajectories that cannot be physically realized with

ones that can [12, 15]. Here, unrealistic subtrajectories are detected

using a local time window, sliding over the trajectory.

Given a trajectory and physics model, we aim to determine the

maximum number of measurements that can be explained through

a path adhering to the model. As such, our problem bears some

resemblance to two other problems: computing a longest common

subsequence (LCSS) andmapmatching. The former asks to compute

the maximum subsequence of two strings [3] and has also been used

to compute trajectory similarity [16]. Contrasting our approach,

LCSS requires that both trajectories are known. The latter, map

matching, is the problem of determining the driven route through

a street network, given a noisy trajectory. Myriad algorithms exist,

e.g. [1, 13]; see [18] for an overview. Dealing with noise naturally

arises in this application. Though we do not investigate this here,

explicit outlier removal before map matching may improve results



Maximum Physically Consistent Trajectories SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

of simple and faster algorithms; postprocessing map matching re-

sults using our methodology may give rise to more realistic results.

However, the primary difference is that our method does not rely

on knowledge of the street network: the space of potential paths is

defined implicitly and as such our methododology is more broadly

applicable to movement that does not follow a predefined network

(pedestrians, ships, airplanes).

2 CONCATENABLE CONSISTENCY MODEL
We assume an arbitrary concatenable physics model that allows

consistency checks between two measurements inO(f (n)) time for

some function f ; typically, f (n) = O(1). We follow themethodology

of the Imai-Iri line-simplification algorithm [9]. LetG = (V ,A) be a
directed acyclic graph with a vertex vi for each measurement pi of
T and an edge fromvi tovj ifC(pi ,pj ). This graph hasO(n2) edges;
each can be tested in O(f (n)) time. By concatenability, a path in G
describes a consistent subsequence. Since G is directed and acyclic,

we compute a longest path in G, and thus a maximum consistent

subsequence of T , in O((|V | + |A|)f (n)) = O(n2 f (n)) time.

We now develop an output-sensitive variant of this algorithm.

Rather than constructing the full graph, we build a subgraph in

which each vertex v has at most one incoming edge (uv ,v). In par-

ticular, uv and v are the last measurements of a longest consistent

subsequence Tv ending in v . Let ℓv denote the length of Tv .

Theorem 2.1. Consider a concatenable physics model that allows
checking the consistency of a pair of measurements in O(f (n)) time.
A maximum consistent subsequence of a trajectoryT with n measure-
ments can be computed in O(nk f (n)) time, where k is the number of
outliers.

Proof sketch. We maintain a linked list of the already pro-

cessed measurements, sorted by the length of the consistent subse-

quence ending at that measurement. For a new measurement p, we
traverse this list to find the first measurement q consistent with p,
that is, with C(q,p). We then insert p with Tp having length 1 +Tq .
Each of the n − k measurements in the longest result traverses

only O(k) measurements in the list, while each of the k outliers

traverses O(n) elements. As all other operations take O(f (n)) time,

the algorithm takes O(nk f (n)) time. □

3 THE SPEED-BOUNDED MODEL IN 2D
We now consider the speed-bounded model, with maximum speed

v
+
, and trajectories in R2. We present an O(n logn log2 k)-time

algorithm to find a maximum consistent subtrajectory in this model.

To this end we develop an insertion-only data structure that, given a

measurement q, can determine the length of a maximum consistent

subsequence ending at q inO(log3 n) time. Insertions are supported

in O(log3 n) time. By incrementally building the data structure in

chronological order, we can determine the maximum consistent

trajectory inO(n log3 n) time. With a more careful analysis this can

be improved to O(n logn log2 k) time.

3.1 A consistency data structure
Let P be a subset of measurements from T , and let t̂ be the time of

the last measurement in P . We develop a data structure D that can

efficiently answer consistency-queries on P . That is, for a given new

query measurement q occurring at time t ≥ t̂ , we can test if there is

ameasurement in P consistent withq. We view themeasurements in

P as points in R3, with the third axis being time, i.e. pi = (xi ,yi , ti ).
Measurements pj , with j > i , that are consistent with pi must lie

inside a cone that starts at pi and has radius v
+(t − ti ) at time t ≥ ti .

We call this cone the reachable region of pi ; testing whether pj is in
the reachable region of pi takes O(1) time.

To determine if a measurement q at time ti ≥ t̂ is consistent
with any measurement of P we use an additively weighted Voronoi
diagram (AWVD). Given a set of circles with centers {v1, . . . ,vl }
and radii {r1, . . . , rl }, this diagram partitions the plane into cells

{c1, . . . , cl } associated with the circles, such that for any point

v ∈ ci : d(v,vi ) − ri ≤ d(v,vj ) − r j , for all vj , vi . Here, d is

a distance measure (in our case the Euclidean distance), and the

equality holds only on boundaries between cells.

We construct an AWVD on the measurements in P by using the

locations as the centers and picking ri = v
+(t ′ − ti ) for every mea-

surement for some arbitrary t ′ > tn . Observe that a measurement

pj is consistent with ph if the reachable region of pj at t
′
is inside

the reachable region of ph at t ′. We preprocess the AWVD for point

location queries. Let D denote the resulting data structure, which

we refer to as a consistency data structure. We can now query D

with a new measurement q = pi , giving us a previous measurement

pc and a distance sc between the circles (pi , ri ) and (pc , rc ), given
by sc = d(pi ,pc ) − ri − rc . The following lemma then gives us that

D can be used to answer consistency queries.

Lemma 3.1. Let D be a consistency data structure on a set P of
measurements and let q = pi be a query measurement. If sc ≤ −2ri
for the resulting distance sc of pc with pi on D, pc is consistent with
q. Otherwise, no measurement in P is consistent with q.

Proof sketch. If the inequality holds, it immediately follows

that the reachable region of pi is inside that of pc , so pi and pc
are consistent. Otherwise, pc is not consistent, and the AWVD

definition tells us that all other distances are larger, so no other

measurement can be consistent. □

We can construct the AWVD for a set ofm measurements and

preprocess this AWVD for point-location queries in O(m logm)

time [4, 5]. The resulting data structure uses O(m) space, and can

answer point-location queries in O(logm) time. Since a single con-

sistency check takes constant time, we can also answer consistency

queries in O(logm) time.

3.2 Supporting insertions
Next, we describe how to extend our consistency data structure to

support insertions. Testing whether a measurement is consistent

with any previous measurement of a subsequence of T is a decom-

posable search problem. Thus, we use the approach by Bentley and

Saxe [2] to turn our consistency data structure into an efficient

insertion-only data structure.

For a set ofm measurements, we maintainO(logm) instances of

our static data structure D1, . . . ,DO (logm) (see Fig. 2). Every mea-

surement is in one of theseO(logm) data structures. Data structure

Di has size 2
i
. On insertion, we create a new D1 with the inserted

measurement. When we get two data structures of same size 2
i
, we

remove both and replace them by a single data structure of size 2
i+1

.



SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA B. Custers, M. van de Kerkhof, W. Meulemans, B. Speckmann, and F. Staals

Figure 2: Inserting elements using Bentley-Saxe. The col-
oredmeasurements in the trajectory are the elements in the
insertion only consistency data structure.

We repeat this process until all data structures have a unique size.

To answer a query we simply query all O(logm) data structures.

The above construction together with the consistency query

structure givesO(log2m) time for a query andO(log2m) amortized

time for an insertion. These bounds can be made worst case as

well [14]. We summarize our results in the following lemma.

Lemma 3.2. There is a consistency data structure D that can store
a subset P ofm measurements from T and can answer consistency
queries for query points q at time t ≥ t̂ , in O(log2m) time, and
supports insertions in O(log2m) time. Here, t̂ denotes the time of the
last measurement currently in P . The data structure uses O(m) space.

3.3 Maximum subsequence queries
We now use the data structure from Lemma 3.2 to build a dynamic

data structure that, for a new query measurement q = pi can

determine the length ℓq of a longest consistent subsequenceTq ⊆ P
ending at q. We store the measurements in p ∈ P in the leaves of

a balanced binary tree T , ordered by the length ℓp of the longest

consistent subsequence ending in p. Each internal nodev with right

child r corresponds to a subset Pv ⊆ P , and stores the minimum ℓp ,

with p ∈ Pr , occuring in its right subtree, and a consistency data

structure Dv built on the set Pr (see Fig. 3).
Given a query measurement q, we find a measurement uq ∈ P

consistent with q with maximum length ℓu . It then follows that a

maximum-length consistent subsequenceTq ending in q has length

ℓu + 1, and that uq is the predecessor of q in Tq . To find uq we

start at the root v and query Dv to test whether any measurement

in the right subtree is consistent with q. If so, we repeat the pro-
cess in the right child. If not, we move to the left child. This way

we get the longest-path measurement that is consistent with our

query measurement q. Since querying an associated consistency

data structure Dv takes O(log2m) time, and we do O(logm) such

queries, the total query time is O(log3m).

To insert a new measurement q, we find the leaf corresponding

to length ℓq and insert q in the appropriate associated data struc-

tures of all ancestors along this root to leaf path. To keep the tree

T balanced, we implement it using a BB[α] tree. When a subtree

rooted at a node v becomes unbalanced, we rebuild it and its as-

sociated data structures from scratch. The amortized cost of these

rebalancing operations can be shown to be O(log3m).

Lemma 3.3. There is a data structure T that can store a subset P
ofm measurements from T and that given a query measurement q at

Figure 3: Data structure for maximum subsequence queries.

time t ≥ t̂ can find (the length ℓq of) a longest consistent subtrajectory
Tq ending in q inO(log3m) time. The data structure usesO(m logm)

space and supports insertions in O(log3m) amortized time. Here, t̂
denotes the time of the last measurement currently in P .

3.4 Maximum consistent subtrajectories
To compute a maximum-length consistent subtrajectory of T , we
process all measurements in chronological order. For each we sim-

ply query the data structure from Lemma 3.3, and then insert it.

This results in an O(n log3 n) time algorithm. Next, we show that

we can improve this to O(n logn log2 k), where k is the number of

outliers.

Lemma 3.4. If C(pi ,pj ) for j > i , then the reachable region for pj
for all t > tj is always contained in the reachable region of pi .

Proof sketch. Measurementpj is consistentwithmeasurement

pi if its reachable region is strictly contained inside the reachable

region of pi at time tj . For time beyond tj , the regions grow with

the same speed. Thus, the smallest distance between the regions

remains constant, which implies that the reachable region of pj
remains inside the region of pi for higher t . □

From the definition of the AWVD, we know that if a disk c1 is
strictly inside another disk c2, then c1 will have an empty associ-

ated cell in the diagram. Combining this with Lemma 3.4 shows

that, any subset of m ≥ 1 measurements thus produces a dia-

gram with at most min(k,m) cells. Hence, a static consistency data

structure uses only O(min(k,m)) space, and querying it requires

O(log(min(m,k))) time. When we insert a new measurement pj
into our insertion-only data structure, we first query the data struc-

ture to test if pj is consistent with some earlier measure pi . If so,
we simply discard pj rather than inserting it; even when inserting

additional points, the cell of pi will contain that of pj . The query

and insertion time therefore both become O(log2min(m,k)).
It now follows that the associated data structure Dv of every

node inv ∈ T has size onlyO(min(nv ,k)), thus querying it requires
onlyO(log2 k) time, and thusO(logn log2 k) time in total. Similarly,

inserting a new measurement takes amortized O(logn log2 k) time.

Theorem 3.5. Given a 2D trajectory T with n measurements, of
which k are outliers, we can compute a maximum consistent subse-
quence of T for the speed-bounded model in O(n logn log2 k) time.



Maximum Physically Consistent Trajectories SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

4 THE ACCELERATION-BOUNDED MODEL
We now consider 1D trajectories, where each measurement is of

the form pi = (xi , ti ). We assume a physics model where both the

velocity and acceleration at any time are restricted. We require

the velocity to be in the range [v−, v+] for some chosen constants

v
−, v+. In addition, we require the acceleration to be in the range

[a−,a+] where again a−,a+ are chosen constants. For simplicity,

we will assume a− < 0.

For this physics model, we can still test if two pointspi andpj are
consistent in constant time: we can check if the distance between

the measurements can be travelled by a velocity that lies in the

velocity range [v−, v+]. Then, if there exists a velocity atpi such that
the required velocities can be reached by accelerating, the pair is

consistent. However, when considering more than two points, this

approach is not applicable as there may be a triplet of measurements

⟨p1,p2,p3⟩ for which the measurements are pairwise consistent, but

the entire sequence is not. This implies that consistent sequences

are not concatenable, and hence the previous algorithms are not

applicable. Instead, we develop a new algorithm that explicitly

computes the speeds achievable at every measurement, and uses

this to find a maximum-length consistent subtrajectory.

4.1 Computing speed intervals
The following observation provides the basis for our algorithm.

Observation 1. A (sub)trajectory S = ⟨p1, . . . ,pm⟩ is consistent
if and only if there are velocities ⟨v1, . . . ,vm⟩ such that for all i ∈
1, . . . ,m we have that C(pi ,pi+1 | vi = vi ).

For each measurement pi and each possible length ℓ ∈ 1, . . . ,n,
we maintain the set of velocities I(ℓ, i) such that for every velocity

v ∈ I(ℓ, i), a subsequence S = ⟨. . . ,pi ⟩ of length ℓ exists with
C(S | vi = v). Let ℓ∗ be the maximum value for which there is a

measurement pi for which I(ℓ, i) is non-empty. It follows that the

maximum consistent subtrajectory of T has length ℓ∗.

Given the set of possible speeds I(ℓ,h) at ph , we can then deter-

mine whether a consistent subsequence of length ℓ + 1 exists that

ends at a later measurement pi by using the conditional concaten-

ability property: if we find velocities vh ∈ I(ℓ,h) and v ∈ [v−, v+]

such that C(ph ,pi | vh = vh ∧ vi = v), then a consistent subse-

quence ⟨. . . ,ph ,pi ⟩ of length ℓ + 1 exists. Hence, we obtain the

following recurrence for I(ℓ, i).

I(ℓ, i) =


∅, i < ℓ

{v | ∃h : C(ph ,pi | vi = v)}, ℓ = 2{
v | ∃h : C

(
ph ,pi |

vh ∈ I(ℓ − 1,h),
vi = v

)}
, ℓ > 2

Moreover, we prove that when the entity directly travels from

pi to pj , and leaves pi with velocity vi , the possible velocities with
which it can arrive at pj form a connected interval.

Lemma 4.1. Let pi ,pj be measurements with ti < tj , and let v1 ≤

v ≤ v2 be velocities. If C(pi ,pj | vj = v1) and C(pi ,pj | vj = v2),
then we also have C(pi ,pj | vj = v).

Proof. C(pi ,pj | vj = v1) and C(pi ,pj | vj = v2) imply that

there are two witnesses: paths π1(t),π2(t) between pi and pj that
travel ∆x = x j − xi distance, obey the physics model and have

`

i

Figure 4: The order for
computing I(ℓ, i) in our dy-
namic program.

vi

v
j

Figure 5: Speed vi maps to
a speed interval at vj ; as-
sumes minimum or maxi-
mum speed is not reached.

velocity v1 respectively v2 at pj . Let a1(t) and a2(t) denote the

acceleration functions describing these paths.

The travelled distance ∆x between ti and tj using any accelera-

tion function a′(t) and velocity v ′
at pj is given by

∆x = (tj − ti )

(
v ′ −

∫ tj

ti
a′(t)dt

)
+

∫ tj

ti

∫ t

ti
a′(t ′)dt ′dt (1)

If we take a convex combinationv = βv1+(1−β)v2 for β ∈ [0, 1] and

similarlya(t) = βa1(t)+(1−β)a2(t) to create a new path, we see that

we get the exact same travelled distance by linearity of the integrals.

Since we took a convex combination, we know that the path still

satisfies the velocity and acceleration constraints, since the velocity

and acceleration for the new path will always lie between the

original velocities and accelerations at any time t in [ti , tj ]. Hence,
the new path is a witness that impliesC(pi ,pj | vj = v1+ (1− β)v2)
for any β ∈ [0, 1] – this concludes the proof. □

Hence, the sets I(ℓ, i) actually form sets of intervals. With some

slight abuse of notation, we treat them as such in the remainder

of the paper. Let δ (ℓ, i) denote the number of intervals in I(ℓ, i).
We refer to δ (ℓ, i) as the fragmentation of I(ℓ, i). Let δmax be the

maximum fragmentation over all ℓ and i . Next, we establish how

to propagate a single speed interval from pi to pj .

Lemma 4.2. Let pi and pj be two measurements with i < j, and
let I be an interval of speeds at pi . The interval I ′ = {v | C(pi ,pj |
vi ∈ I ∧ vj = v)} of achievable speeds can be computed in O(1) time.

Proof Sketch. Let v and v ′
be the endpoints of I . We can ex-

press the minimum and maximum speed achievable at pj , assuming

that the speed at pi is v or v ′
. This gives us the minimum and

maximum speed at pj . □

Using the above recurrence, we can then compute all values

I(ℓ, i) using dynamic programming. We compute the I(ℓ, i) values
by increasing distance k ′ from the diagonal, and stop once there

are no more reachable speeds. That is, we start by computing all

I(i, i), for increasing i . Observe that these values correspond to

having k ′ = 0 outliers. Once we have all sets I(i−k ′, i) for some k ′,
we continue with the I(i − (k ′ + 1), i) sets (see Fig. 4). Let k be the

number of outliers in a maximum-length consistent subtrajectory,

then all sets of speed intervals I(i − (k + 1), i) will be empty. Hence,

the algorithm finishes after at most k + 1 “rounds”. To compute a



SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA B. Custers, M. van de Kerkhof, W. Meulemans, B. Speckmann, and F. Staals

single entry I(i − k ′, i) we have to propagate the speed intervals

from at most k other entries (since all sets I(ℓ, i) with ℓ > i are
also empty). It follows that in total, this procedure takes O(nk2 · P)
time, where P is the time required to propagate all speed intervals

in some set I(ℓ′, i) to I(ℓ, j). Every set I(ℓ, i) contains at most

δmax intervals, which we keep in sorted order. Propagating a single

interval takes constant time (Lemma 4.2), and merging it with the

intervals already in I(ℓ, i) then takes O(logδmax) time.

Theorem 4.3. Given a 1D trajectory T with n measurements. Un-
der the velocity and acceleration-boundedmodel, the maximum length
of a physically consistent subtrajectory of T can be computed in
O(nk2δmax log(δmax)) time with O(nkδmax) space, with k the num-
ber of outliers and δmax the maximum fragmentation.

4.2 A bound on the size of I(l , i)
The running time of the dynamic program sketched in the previous

section depends on the maximum fragmentation, i.e., the maximum

number of intervals in a set I(ℓ, i). We observe that I(ℓ, i) may

contain more than one velocity interval, see Fig. 1 (right). As we

show in the following lemma, the fragmentation may even be Ω(n).

Lemma 4.4. There is a one-dimensional trajectoryT with n vertices
in which Ω(n) vertices have fragmentation Ω(n).

Proof. We construct a trajectoryT = ⟨p1, . . . ,pn/2, c1, . . . , cn/2⟩

such that for parameters v
− = 0 and a = a+ = −a− = 1, we get

Ω(n) speed intervals at each point c j , j ∈ 1, . . . ,n/2.
Let ∆ > 0 be some real number. We place the points at pi =

(−4i · ∆2, 0), for i = 1, . . . ,n, and c j = (0,∆), for j = 1, . . . ,n (see

Fig. 6). We can ensure that all points have unique time stamps by

offsetting them by some arbitrarily small time. This construction

ensures that a consistent subtrajectory cannot use two pointspi and
pj simultaneously. We now claim that every point pi together with
point c = c1 generates a consistent subtrajectory ⟨pi , c⟩ for which
the possible speeds at c are given by the interval Ii = [vi −∆,vi +∆]
with vi = 4i∆. Observe that these intervals are all pairwise disjoint.
Since the other points c j are arbitrarily close to c , the same argument

shows that we get Ω(n) speed intervals at those points.

Since a = 1 and the time between pi and c is short, the speed
that the entity has at pi must be similar to its speed at c . If the speed
at pi differs too much from the speed at c , then the entity cannot

actually reach c: it will either travel too little or too far. Next, we

formalize this argument.

To derive a contradiction, assume that there is a consistent sub-

trajectory in which an entity travels from pj , with j , i , to c and
arrives at c with speed v ∈ Ii . Since v

− = 0, the distance that any

entity can and has to travel to go from pj to c is exactly 4j∆2
. The

entity covers this in ∆ time, and hence its average speed must be

cn/2

p2pn/2
∆

p1

c = c1

4∆2
. . .

t

x

Figure 6: Instance with Ω(n) disjoint speed intervals at c.

4j∆. Since a = 1, it then follows that at any time in the time interval

[0,∆] its speed lies in the range [4j∆ − ∆, 4j∆ + ∆].
The entity achieves speed v ∈ Ii = [vi − ∆,vi + ∆] at c . So, we

have 4j∆ − ∆ ≤ v ≤ vi + ∆. Using that vi = 4i∆ we get j ≤ i + 1

2
.

As i and j are natural numbers, we get j ≤ i . Symmetrically, we

have vi − ∆ ≤ v ≤ 4j∆ + ∆, and get i ≤ j . Combining these results

gives i = j: a contradiction.
Note that in this construction all consistent subtrajectories have

length two. We can easily achieve length ℓ > 2 by prefixing the

construction with a common trajectory of length ℓ − 2; this prefix

provides sufficient time between its last point and the points pi , to
allow the entity can achieve all speeds vi at pi . □

An upper bound on the fragmentation δ (ℓ, i) is O(2i ), since any
fixed subsequence of ⟨. . . ,pi ⟩ yields only a single interval (refer

to Lemma 4.1). We expect that the fragmentation is much smaller

in practice and examine how many disjoint intervals we can get

in the propagation function (see Fig. 5). The exponential behavior

follows from the many very small intervals that can be present

at the extremes of the function. Hence, we introduce some slack

in the parameters a−,a+. We then merge intervals whenever the

corresponding intervals in the slacked model overlap.

Let∆a = a+−a−. We add
ε
2
∆a toa+ and− ε

2
∆a toa−. We can give

a rough upper bound on the number of intervals a measurement can

contribute to the intervals of a later measurement by determining

how large the smallest possible input interval can be and dividing

the entire possible input range by this size. First, we compute the

input velocities that correspond to the smallest possible output

range. This range is the input range corresponding to the output

range at the extremes of the input range under the slacked model.

Then we divide the entire input range by this range. As at mostO(n)

interval sets are propagated, we now have δmax(ε) = O(nε
−1/4).

4.3 Retrieving the consistent subtrajectory
The dynamic program computes the length ℓ∗ of a maximum con-

sistent subsequence. Generally, keeping track of the choices made

in a dynamic program allows easy recovery of the actual answer,

that is, the actual subsequence. However, we need slightly more,

as we join overlapping intervals and thus no longer store which

previous measurements led to parts of that interval – generally

there may not be only one measurement for an interval.

We could opt for storing a minimum cover of the interval in a

cell instead, which we can easily obtain while computing the union.

However, this increases memory requirements. Alternatively, we

can also use “backpropagation”. That is, we extract S itself using the

speed intervals in the sets I(ℓ∗, i). We take an interval I ∈ I(ℓ∗, i)
and use an inverse propagation to find a measurement ph such that

I(ℓ∗−1,h) has a nonempty interval of speeds at which the interval

of I(ℓ∗, i) is reachable. We repeat this backpropagation, until the

start of the subsequence is reached.

To do this efficiently, we leverage that the intervals in I(ℓ∗ −

1,h) are sorted by the dynamic program already. Thus, we use

backpropagation in O(1) time by Lemma 4.2 to find the velocity

interval I ′ at ph . We then find whether one of the intervals in

I(ℓ∗ − 1,h) intersects I ′ using binary search in O(logδmax) time.

Thus, computing the subtrajectory after the dynamic program takes

O((n − k) logδmax) time.



Maximum Physically Consistent Trajectories SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

4.4 Extending to higher dimensions
The algorithm described above works for one-dimensional data.

This may be realistic in some scenarios: for example, if we track

contestants in a race along a predefined route, the known route

defines an approximately one-dimensional space. However, in most

cases, movement is in two or even three dimensions. There are

various ways of generalizing the acceleration-bounded model.

There are two standard 2D “interpretations” of our algorithm:

either we use the Euclidean distance between the points, or we

consider the Euclidean length of the path through all intermediate

measurements. In our view, the former is more suitable as we aim

to remove outliers which could greatly affect distances in the latter.

Yet, assuming a linear motion between two measurements is un-

realistic as well. Thus, we use the Euclidean distance between mea-

surements only as a lower bound; the upper bound is the Euclidean

distance multiplied by a constant. Note that an upper bound can

also be derived from the current speed and acceleration bounds, but

we use our simpler model in the experiments below. To propagate a

velocity interval, we use the distance lower bound to determine the

minimum velocity at the next measurement, and the upper bound

for the maximum velocity.

Of course, the models above assume that the tracked object may

turn arbitrarily fast. Effectively, this means that positive or negative

velocity becomes meaningless as we can instantaneously rotate

from one to the other. We thus set the minimal velocity to zero.

However, the direction of movement cannot be changed arbitrar-

ily fast in reality, especially at higher speeds. Though we can easily

define various physics models to address this issue, this would re-

quire more complex algorithms: we need to know more than just

speed for the propagation and thus must generalize from intervals

to higher-dimensional regions.

5 EXPERIMENTS
We introduced various algorithms for computing maximum con-

sistent subsequences of a trajectory, according to different physics

models, specifically a speed-bounded and an acceleration-bounded

model. The algorithms for the former are simpler and faster than

for the latter. However, the acceleration-bounded model is more ac-

curate. Through a series of experiments, we investigate the quality

of our algorithms and the trade-off between them.

5.1 Algorithms
We use the following algorithms in our experiments. The first two

refer to our optimal output-senstive algorithms described above,

their running time depending on the number of outliers. Addi-

tionally, we use three comparison algorithms to investigate the

quality of our methods with respect to simpler algorithms. These

algorithms are two variants of an incremental greedy algorithm

(under both physics models) and a local greedy method (under the

speed-bounded model). We implemented all algorithms in C++.

[OSB] Optimal Speed-Bounded. This algorithm implements the

method of Section 2, under the speed-bounded model.

[OAB] Optimal Acceleration-Bounded. This algorithm imple-

ments the method of Section 4. We use the 2D generalization with

an upper bound on the travelled distance of 1.5 times the Euclidean

distance between two measurements.

[GSB/GAB] Greedy Speed/Acceleration-Bounded. We greed-

ily build a consistent subsequence by testing whether the next

considered measurement is consistent with the last in the current

subsequence under the speed-bounded model (GSB) or acceleration-

bounded model (GAB). For GAB, we use the propagation technique

of OAB to maintain an interval of speeds – the next measurement

is consistent if the interval after propagation is nonempty. These

methods must run in O(n) time.

[SGSB/SGAB] Smart Greedy Speed/Acceleration-Bounded.
We keep track of multiple greedy subsequences simultaneously.

We append the next measurement to each subsequence ending

in a consistent measurement; if no such subsequence exists, the

measurement starts a new subsequence. The longest subsequence

is returned. These methods run in O(n2) time.

[LGSB] Local Greedy Speed-Bounded. Zheng [18] points to the
only other method that uses a bound on the speed for outlier de-

tection. However, neither survey nor the references therein give a

detailed description of this heuristic method. We hence compare

against our interpretation of the sketch provided by Zheng [18].

We construct a graph with a vertex per measurement. Two vertices

are connected if their measurements are successive in the original

trajectory and they are consistent according to the speed bound. A

measurement is added to the output, if and only if its vertex is in a

connected component of a user-specified size σ . We use σ = 3 in

our experiments. Note that this local heuristic does not guarantee

that the complete output is consistent according to the speed bound.

5.2 Datasets
We use three real-world datasets in our experiments. They are based

on GPS measurements in different modes of transport, at different

locations and different times. All trajectories in the data sets have

at least 10 measurements.

[MB]Mountain-bike trips. This dataset consists of 1 214 trajecto-
ries of mountain-bike trips in several European countries from 2012

to 2019. On average, the trajectories have 3377.1 measurements

(standard deviation 2643.4) and average speed 18.8 km/h, (standard

deviation 10.9 km/h). We set v
− = 0 km/h, v

+ = 35 km/h. For the

acceleration-bounded model, we additionally use a− = −3.24 m/s
2
,

a+ = 1.62 m/s
2
.

[HR] The Hague-Rotterdam. This dataset provided by HERE
1

consists of 5 000 trajectories of cars and trucks in the region of The

Hague-Rotterdam (the Netherlands), on a single day in January 2019.

On average, the trajectories have 424.9 measurements (standard de-

viation 545.6) and average speed 62.3 km/h, (standard deviation 43.0

km/h). We set v
− = 0 km/h, v

+ = 125 km/h. For the acceleration-

bounded model, we additionally use a+ = −a− = 10 m/s
2
.

[LA] Los Angeles. This dataset provided by HERE
1
consists of

78 658 trajectories of cars and trucks in the metropolitan area of

Los Angeles, CA (USA), on a single day in September 2018. On

average, the trajectories have 304.4 measurements (standard de-

viation 1082.0) and average speed 55.8km/h (standard deviation

1557.65 km/h). For the LA dataset, we set v
− = 0 km/h, v

+ = 129.6

km/h. For the acceleration-bounded model, we additionally use

a+ = −a− = 10 m/s
2
.

1
http://www.here.com/

http://www.here.com/


SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA B. Custers, M. van de Kerkhof, W. Meulemans, B. Speckmann, and F. Staals

Figure 7: Comparing the various algorithms. Each axis represents the (relative) length. Top row: MB data; middle row: HR
data; bottom row: LA data. First three columns: comparison of OSB with GSB, SGSB and LGSB; last two columns: comparison
of OAB with GAB and SGAB.

Table 1: Mean and standard deviation of the ratio between greedy strategies and optimal strategies, split by bins of the optimal
length (“length” row). The “size” row indicates the percentage of trajectories in the corresponding length bin. in GSB, SGSB
and LGSB are compared to OSB; GAB and SGAB to OAB.

MB HR LA

Length 0.0 - 0.6 0.6 - 0.8 0.8 - 0.9 0.9 - 1.0 0.0 - 0.6 0.6 - 0.8 0.8 - 0.9 0.9 - 1.0 0.0 - 0.6 0.6 - 0.8 0.8 - 0.9 0.9 - 1.0
Size 0.07% 0.20% 0.57% 99.17% 3.14% 4.58% 5.96% 86.32% 0.33% 2.06% 7.00% 90.61%

GSB 0.87 ± 0.14 0.97 ± 0.01 0.98 ± 0.01 1.00 ± 0.01 0.83 ± 0.20 0.95 ± 0.07 0.98 ± 0.03 1.00 ± 0.01 0.87 ± 0.17 0.93 ± 0.11 0.97 ± 0.05 1.00 ± 0.01

SGSB 0.95 ± 0.06 0.97 ± 0.01 0.98 ± 0.01 1.00 ± 0.01 0.93 ± 0.07 0.97 ± 0.04 0.99 ± 0.02 1.00 ± 0.01 0.94 ± 0.08 0.96 ± 0.05 0.98 ± 0.03 1.00 ± 0.01

LGSB 1.10 ± 0.20 1.08 ± 0.02 1.05 ± 0.01 1.01 ± 0.01 1.22 ± 0.28 1.11 ± 0.07 1.05 ± 0.03 1.00 ± 0.01 1.05 ± 0.48 1.04 ± 0.16 1.05 ± 0.05 1.00 ± 0.01

Size 0.07% 0.21% 0.70% 99.02% 3.14% 4.64% 5.94% 86.32% 0.33% 2.06% 7.33% 90.28%

GAB 0.98 ± 0.06 0.97 ± 0.01 0.98 ± 0.01 1.00 ± 0.01 0.83 ± 0.21 0.95 ± 0.07 0.98 ± 0.03 1.00 ± 0.01 0.87 ± 0.17 0.93 ± 0.11 0.97 ± 0.04 1.00 ± 0.01

SGAB 1.10 ± 0.27 0.97 ± 0.01 0.98 ± 0.01 1.00 ± 0.01 0.93 ± 0.08 0.97 ± 0.04 0.98 ± 0.02 1.00 ± 0.01 0.93 ± 0.09 0.96 ± 0.06 0.98 ± 0.03 1.00 ± 0.01

5.3 Results
In our analysis of the results, we look primarily at relative lengths,

that is, the ratio of the number of measurements with respect to the

input size. Thus, a result that filters k outliers and keeps n − k mea-

surements has a relative length of
n−k
n ∈ [0, 1]. In the remainder,

we simply use length to refer to relative length.

Speed-bounded model. We have three algorithms that strictly

adhere to the speed-bounded model: OSB, GSB and SGSB (see Fig. 7

(left two columns)). As OSB computes optimal results, GSB and

SGSB cannot result in longer subsequences. For the MB dataset,

we observe that GSB and SGSB perform very similarly in terms

of the number of outliers detected. For the HR and LA datasets

we see larger differences, especially for GSB. Table 1 shows the

ratio between OSB and GSB/SGSB according to different brackets

of OSB. These numbers indicate that a vast majority of trajectories

has less than 10% outliers, and that in such cases the results are

on average not much different. The more outliers are present, the

more pronounced the difference between our optimal result and

the greedy results becomes.



Maximum Physically Consistent Trajectories SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

OSB is thus more reliable, as it gives optimal results. When there

are few outliers, this algorithm is close to linear and thus we may

expect less of a performance loss compared to the simpler methods.

Indeed, we see that in terms of running time, OSB (0.50 ms on

average per trajectory) performs similarly as the GSB (0.25 ms)

and is actually faster than SGSB (3.17 ms). When there are many

outliers, the extra time spent may be well worth the effort to obtain

the maximum consistent subsequence.

Acceleration-bounded model. Refering to Fig. 7 and Table 1, we
observe the same patterns between OAB and GAB/SGAB as above

for the speed-bounded variants, but the differences are more pro-

nounced. However, it must be noted that the computation times

behave much differently. Although the number of intervals in a

single cell never exceeds 2 for almost all trajectories (with a max-

imum of 4), the computation time of OAB (232.82 ms on average

per trajectory) is significantly higher than GAB (0.40 ms) and SGSB

(5.54 ms). Thus, OAB seems practical mostly for cases where pro-

cessing speed is not a primary concern: for example, because much

longer offline computations are expected afterwards, or because

the trajectory lengths are limited.

Local strategy. The LGSB method can also be compared to OSB.

However, because this method does not ensure that the entire

subsequence adheres to the physics model, it may be the case that

LGSB yields a longer sequence than OSB. This is quite structurally

the case (see third column in Fig. 7), with more pronounced effects

for a large number of outliers (see Table 1, LGSB row). This indicates

that the local strategy for determining outliers is not quite suitable

for capturing the actual constraints of the physics model.

We further investigate by postprocessing the results of LGSB

by OSB (LGSB→OSB). That is, we find the longest consistent sub-

sequence of the LGSB result. If LGSB would work perfectly, no

outliers are filtered in this postprocessing step. The more outliers

are found in the LGSB result, the more violations of the physics

model the LGSB result exhibits. The left column of Fig. 8 shows

the results; note that the vertical axis shows not (relative) length

with respect to the input, but with respect to the result without

postprocessing. We see again that the results depend on the number

of outliers in the trajectory, but overall the difference may be quite

pronounced: LGSB→OSB on average has 8.75% less measurements

than LGSB for cases with OSB length less than 0.9. The dataset also

has an effect: MB has less variance than the other two datasets.

Comparing models. Since any acceleration-bounded path in our

setting is also a speed-bounded path, OSB cannot detect more

outliers than OAB. That is, OSB results can be interpreted in the

acceleration-bounded model and we can investigate how well the

model inherently meets the acceleration bound. We follow the same

approach in comparing LGSB to OSB above, postprocessing OSB

results by OAB (OSB→OAB) to determine how many outliers the

OSB result still includes.

The right column of Fig. 8 shows the results. We clearly see that

that only few measurements are filtered in the OAB postprocessing

step for all three datasets. This pattern is strongest in MB (0.09%

classified as outliers on average) and HR (0.04% on average), even

for more noisy trajectories. For the LA dataset, slightly more mea-

surements are filtered (1.74% on average), but interestingly, this

Figure 8: Postprocessing to ensure a stricter physics model.
Top row:MBdata;middle row:HRdata; bottom row: LAdata.
First column: comparison of LGSB→OSB with OSB; second
column: comparison of OSB→OAB with OAB.

seems mostly the case for the less noisy trajectories. These averages

are based on the cases with OAB length less than 0.9.

We may conclude that generally the speed-bounded model is

capable of getting quite realistic results even for the acceleration-

bounded case, while avoiding the computational complexity. It

is interesting that there seems to be slightly different behaviors

between the two vehicle datasets: this raises the question whether

differences in traffic and driving behavior make acceleration more

important in certain environments than in others.

Parameter sensitivity. The physics models have a few parameters

to capture what is realistically possible movement through space

and time. Here, we look at how sensitive the results are to changing

the parameter values. Following our observations from the previous

section, we focus on the speed-bounded model which effectively

has one parameter: the maximum speed.

We run our OSB algorithm on all data again, but now increment

the speed bound from 0 km/h to 70 km/h (MB), from 0 km/h to

160 km/h (HR) and from 0 km/h to 160 km/h (LA), in steps of 5

km/h. We operationalize sensitivity as the largest change in the

resulting length between two consecutive steps (its unit is thus

relative length per km/h, or h/km). That is, if we plot the length

of the result as a function of the speed bound, this represents the

steepest slope. Such a plot is illustrated in Fig. 9.

Table 2 shows summary statistics for the three datasets on this

sensitivity. We see that the effect of the parameter may be quite



SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA B. Custers, M. van de Kerkhof, W. Meulemans, B. Speckmann, and F. Staals

Figure 9: Length of OSB as a function of maximum speed,
for 50 random trajectories for each dataset.

Table 2: Parameter sensitivity (relative length per km/h).

dataset mean stddev min max

MB 0.076 ± 0.032 0.032 0.200

HR 0.047 ± 0.029 0 0.200

LA 0.053 ± 0.038 0 0.200

pronounced in extreme cases: changing the parameter by 1 km/h

may change the number of outliers by almost 20%. On average, the

sensitivity is approximately only a third of that. However, these

results still show that careful selection of the model parameters is

important: too low values result in measurements being identified

as outliers unjustly, but setting them too high might leave too many

outliers undetected.

6 DISCUSSION
Our results indicate that our optimal algorithms outperform sim-

ple greedy strategies, either in quality of the results, running time,

or both. Noise levels and other characteristics do influence these

results, and our methods are particularly effective for dealing with

large amounts of noise. The results also suggest that the quality dif-

ference between speed-bounded models and acceleration-bounded

models are small. This must be considered carefully though, as

there is an effect of social or geographic environment.

By design, we do not consider the use of other data, such as a road

network that a vehicle is driving on. However, such data opens up

various potential avenues for further research. For example, given a

road network, we may be able to more accurately assess the travel

distance or limit it to a few likely candidates, rather than using

the Euclidean distance. For OSB and OAB, this is straightforwardly

included into the algorithm. For our faster algorithm under the

speed-bound model, however, this is not quite the case, as the

AWVD is no longer directly applicable, but there may be potential

to generalize the approach.

Beyond assessing distances more accurately, additional data

could also be used to define more accurate physics models. Our

current models are fairly simple, and use only few parameters to

define global thresholds on the maximum speed and acceleration.

However, such thresholds may actually depend on the environment.

For example, expected maximum speed for driving in a car is differ-

ent on the highway than it is in an urban environment. Similarly,

cycling uphill or downhill affects maximum speed. Ideally, physics

models and, by extension, outlier-detection algorithms should ac-

commodate for such variations, as this allows for more efficacious

processing of heterogeneous trajectories that travel through differ-

ent environments.

Including contextual factors will make the models more accurate

and realistic, but a crisp decision boundary (movement is or is not

physically possible) may no longer exist. Instead, we may want

to define that a car can violate speed limits, but the severity and

duration affect how likely the behavior is. Futurework could explore

“behavioral models” that describe expected movement more closely,

including context, and are more robust by allowing deviations from

the model, thereby reducing parameter sensitivity.

ACKNOWLEDGMENTS
The authors would like to thank Kevin Verbeek for fruitful dis-

cussions on the topic of this paper, and HERE Technologies for

providing the HR and LA datasets. This research was initiated at

the 4th Workshop on Applied Geometric Algorithms (AGA 2018) in

Langbroek, The Netherlands, supported by the Netherlands Organ-

isation for Scientific Research (NWO) under project no. 639.023.208.

B. Custers and M. van de Kerkhof are supported by HERE Tech-

nologies and NWO under project no. 628.011.005; B. Speckmann is

partially supported by NWO under project no. 639.023.208.

REFERENCES
[1] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. Journal of

Algorithms, 49(2):262–283, 2003.
[2] J. L. Bentley and J. B. Saxe. Decomposable searching problems I. static-to-dynamic

transformation. Journal of Algorithms, 1(4):301–358, 1980.
[3] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence

algorithms. In Proceedings of the 7th International Symposium on String Processing
and Information Retrieval, pages 39–48, 2000.

[4] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone

subdivision. SIAM Journal on Computing, 15(2):317–340, 1986.
[5] S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2(1-4):153,

1987.

[6] Y. Ge, H. Xiong, Z.-h. Zhou, H. Ozdemir, J. Yu, and K. C. Lee. Top-eye: Top-k

evolving trajectory outlier detection. In Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, pages 1733–1736, 2010.

[7] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han. Outlier detection for temporal data:

A survey. IEEE Transactions on Knowledge and Data Engineering, 26(9):2250–2267,
2014.

[8] V. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial
Intelligence Review, 22(2):85–126, 2004.

[9] H. Imai and M. Iri. Polygonal approximations of a curve—formulations and

algorithms. Computational Morphology, pages 71–86, 1988.
[10] J.-G. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-detect

framework. In Proceedings of the 24th International Conference on Data Engineer-
ing, pages 140–149, 2008.

[11] X. Li, J. Han, S. Kim, and H. Gonzalez. Roam: Rule-and motif-based anomaly

detection in massive moving object data sets. In Proceedings of the 2007 SIAM
International Conference on Data Mining, pages 273–284, 2007.

[12] M. Montanino and V. Punzo. Trajectory data reconstruction and simulation-based

validation against macroscopic traffic patterns. Transportation Research Part B:
Methodological, 80:82–106, 2015.

[13] P. Newson and J. Krumm. Hidden Markov map matching through noise and

sparseness. In Proceedings of the 17th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pages 336–343, 2009.

[14] M. H. Overmars and J. van Leeuwen. Worst-case optimal insertion and deletion

methods for decomposable searching problems. Information Processing Letters,
12(4):168–173, 1981.

[15] V. Punzo, M. T. Borzacchiello, and B. Ciuffo. On the assessment of vehicle

trajectory data accuracy and application to the Next Generation SIMulation

(NGSIM) program data. Transportation Research Part C: Emerging Technologies,
19(6):1243–1262, 2011.

[16] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimen-

sional trajectories. In Proceddings of the 18th International Conference on Data
Engineering, pages 673–684, 2002.

[17] G. Yuan, S. Xia, L. Zhang, Y. Zhou, and C. Ji. Trajectory outlier detection algorithm

based on structural features. Journal of Computational Information Systems,
7(11):4137–4144, 2011.

[18] Y. Zheng. Trajectory data mining: an overview. ACM Transactions on Intelligent
Systems and Technology, 6(3):29, 2015.


	Abstract
	1 Introduction
	2 Concatenable consistency model
	3 The Speed-bounded model in 2D
	3.1 A consistency data structure
	3.2 Supporting insertions
	3.3 Maximum subsequence queries
	3.4 Maximum consistent subtrajectories

	4 The acceleration-bounded model
	4.1 Computing speed intervals
	4.2 A bound on the size of I(l,i)
	4.3 Retrieving the consistent subtrajectory
	4.4 Extending to higher dimensions

	5 Experiments
	5.1 Algorithms
	5.2 Datasets
	5.3 Results

	6 Discussion
	Acknowledgments
	References

