Algorithms for Hotspot Computation on Trajectory Data

Joachim Gudmundsson
Marc van Kreveld
Frank Staals

University of Sydney
Utrecht University
Problem Statement

Given a trajectory T of a moving entity.

Find a small region where the entity spends a large amount of time:
Problem Statement

Given a trajectory \mathcal{T} of a moving entity.

Find a small region where the entity spends a large amount of time: a hotspot \mathcal{H}.

Problem Statement

Given a trajectory \mathcal{T} of a moving entity.

Find a small square where the entity spends a large amount of time: a hotspot \mathcal{H}.
Problem Statement

Given a trajectory \mathcal{T} of a moving entity.

Find a small square where the entity spends a large amount of time: a hotspot \mathcal{H}.

$\text{time} \approx \text{length}$
Problem Statement

Given a trajectory \mathcal{T} of a moving entity.

Find a small square containing a lot of trajectory length: a hotspot \mathcal{H}.

\[\text{time} \approx \text{length} \]
Problem Statement 1

Given a trajectory \mathcal{T} of a moving entity and a square \mathcal{H}.

Find a placement of \mathcal{H} maximizing

$$\text{length}(\mathcal{T} \cap \mathcal{H})$$
Problem Statement 2

Given a trajectory \mathcal{T} of a moving entity and a length L

Find a placement of \mathcal{H} minimizing $\text{size}(\mathcal{H})$, s.t.

$$\text{length}(\mathcal{T} \cap \mathcal{H}) \geq L$$
Given a trajectory \mathcal{T} of a moving entity and a length L

Find a placement of \mathcal{H} minimizing $\text{size}(\mathcal{H})$, s.t. $\text{length}(\mathcal{T} \cap \mathcal{H}) \geq L$
Problem Statement 3

Given a trajectory \mathcal{T} of a moving entity and a length L

Find a placement of \mathcal{H} minimizing $\text{size}(\mathcal{H})$, s.t.

$$\text{cont.length}(\mathcal{T} \cap \mathcal{H}) \geq L$$
Problem Statement 4

Given a trajectory \mathcal{T} of a moving entity and a square \mathcal{H}.

Find a placement of \mathcal{H} maximizing

$$\text{cont.length}(\mathcal{T} \cap \mathcal{H})$$
Problem Statement 5

Given a trajectory \mathcal{T} of a moving entity.

Find a placement of \mathcal{H} maximizing

$$\frac{\text{length}(\mathcal{T} \cap \mathcal{H})}{\text{sidelength}(\mathcal{H})}$$
Problem Statement 6

Given a trajectory \mathcal{T} of a moving entity.

Find a placement of \mathcal{H} maximizing

$$\frac{cont.\ length(\mathcal{T} \cap \mathcal{H})}{\text{sidelength}(\mathcal{H})}$$
Results

<table>
<thead>
<tr>
<th></th>
<th>Fixed Size</th>
<th>Fixed Length</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>$O(n^2)$</td>
<td>$O(n^2 \log^2 n)$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>cont.length</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>-</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>Fixed Size</th>
<th>Fixed Length</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>$O(n^2)$</td>
<td>$O(n^2 \log^2 n)$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>cont. length</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>-</td>
</tr>
</tbody>
</table>

Our algorithms also work for multiple trajectories,
Results

<table>
<thead>
<tr>
<th></th>
<th>Fixed Size</th>
<th>Fixed Length</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>$O(n^2)$</td>
<td>$O(n^2 \log^2 n)$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>cont.length</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>-</td>
</tr>
</tbody>
</table>

Our algorithms also work for multiple trajectories, and for weighted edges.
Applications

- Finding places
Applications

- Finding places
- Segmentation
Applications
 • Finding places
 • Segmentation
 • Clustering
Applications

- Finding places
- Segmentation
- Clustering
- Visualization
Applications

- Finding places
- Segmentation
- Clustering
- Visualization
Results

<table>
<thead>
<tr>
<th></th>
<th>Fixed Size</th>
<th>Fixed Length</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>$\mathcal{O}(n^2)$</td>
<td>$\mathcal{O}(n^2 \log^2 n)$</td>
<td>$\mathcal{O}(n^3)$</td>
</tr>
<tr>
<td>maxlen</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>-</td>
</tr>
</tbody>
</table>
Total Length, Fixed Size

Parameterize $\Upsilon(c) = \text{length}(\mathcal{T} \cap \mathcal{H})$ by the center c of \mathcal{H}.
Lemma 1. \(\Upsilon \) is piecewise linear.
Consider the subdivision A of the parameter space of Υ.

Parameterize $\Upsilon(c) = \text{length}(\mathcal{T} \cap \mathcal{H})$ by the center c of \mathcal{H}.

Lemma 1. Υ is piecewise linear.

Consider the subdivision A of the parameter space of Υ.

Total Length, Fixed Size

Parameterize $\Upsilon(c) = \text{length}(\mathcal{T} \cap \mathcal{H})$ by the center c of \mathcal{H}.

Lemma 1. Υ is piecewise linear.

Consider the subdivision A of the parameter space of Υ.

Consider the subdivision A of the parameter space of Υ. Parameterize $\Upsilon(c) = \text{length}(T \cap H)$ by the center c of H.

Lemma 1. Υ is piecewise linear.

Consider the subdivision A of the parameter space of Υ. $\max \Upsilon$ occurs at a vertex of A. So, compute Υ at each vertex of A.

Total Length, Fixed Size

Parameterize $\Upsilon(c) = \text{length}(T \cap H)$ by the center c of H.

Lemma 1. Υ is piecewise linear.
Consider the subdivision \mathcal{A} of the parameter space of Υ. Parameterize $\Upsilon(c) = \text{length}(T \cap H)$ by the center c of H.

$max \ Upsilon$ occurs at a vertex of \mathcal{A}. So, compute Υ at each vertex of \mathcal{A}.

Lemma 1. Υ is piecewise linear.

Total Length, Fixed Size

Parameterize $\Upsilon(c) = \text{length}(T \cap H)$ by the center c of H.

Lemma 1. Υ is piecewise linear.

Consider the subdivision \mathcal{A} of the parameter space of Υ.

$max \ Upsilon$ occurs at a vertex of \mathcal{A}. So, compute Υ at each vertex of \mathcal{A}.

Complexity \mathcal{A}: $O(n^2)$

Find max Υ: $O(n^2)$

Total: $O(n^2)$
Contiguous Length, Fixed Size

Find \mathcal{H} by finding $\mathcal{T}[p, q]$.

Contiguous Length, Fixed Size

Find \mathcal{H} by finding $\mathcal{T}[p, q]$.

Lemma 2. There is an optimal hotspot \mathcal{H} s.t. a vertex v of \mathcal{T} lies on $\partial \mathcal{H}$.
Contiguous Length, Fixed Size

Find \mathcal{H} by finding $T[p, q]$.

Lemma 2. There is an optimal hotspot \mathcal{H} s.t. a vertex v of $T[p, q]$ lies on $\partial \mathcal{H}$.
Contiguous Length, Fixed Size

Find \mathcal{H} by finding $T[p, q]$.

Lemma 2. There is an optimal hotspot \mathcal{H} s.t. a vertex v of $T[p, q]$ lies on $\partial \mathcal{H}$.

Corollary 3. Starting point p on one of the horizontal or vertical lines.
Contiguous Length, Fixed Size

Find \mathcal{H} by finding $\mathcal{T}[p, q]$.

Lemma 2. There is an optimal hotspot \mathcal{H} s.t. a vertex v of $\mathcal{T}[p, q]$ lies on $\partial \mathcal{H}$.

Corollary 3. Starting point p on one of the horizontal or vertical lines.

How to find p and q?
Contiguous Length, Fixed Size

Find \mathcal{H} by finding $\mathcal{T}[p, q]$.

Lemma 2. There is an optimal hotspot \mathcal{H} s.t. a vertex v of $\mathcal{T}[p, q]$ lies on $\partial \mathcal{H}$.

Corollary 3. Starting point p on one of the horizontal or vertical lines.

How to find p and q?
Consider \mathcal{T}_x and \mathcal{T}_y separately.
Lemma 2. There is an optimal hotspot H s.t. a vertex v of $T[p, q]$ lies on ∂H.

Corollary 3. Starting point p on one of the horizontal or vertical lines.

How to find p and q?

Consider T_x and T_y separately.

Try to find $[t_p, t_q]$.
Lemma 2. There is an optimal hotspot \mathcal{H} s.t. a vertex v of $\mathcal{T}_{[p,q]}$ lies on $\partial \mathcal{H}$.

Corollary 3. Starting point p on one of the horizontal or vertical lines.

How to find p and q?
Consider \mathcal{T}_x and \mathcal{T}_y separately.
Try to find $[t_p, t_q]$.
Use ray shooting queries.
There is an optimal hotspot H s.t. a vertex v of $T[p, q]$ lies on ∂H.

Starting point p on one of the horizontal or vertical lines.

How to find p and q?

Consider T_x and T_y separately.

Try to find $[t_p, t_q]$.

Use ray shooting queries.

Running time: $O(n \log n)$
Relative Length
Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

3 vertices on $\partial \mathcal{H}$.

Relative Length
Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

3 vertices on $\partial \mathcal{H}$.
2 vertices on $\partial \mathcal{H} + 1$ edge through a corner of \mathcal{H}.
Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

- 3 vertices on $\partial \mathcal{H}$.
- 2 vertices on $\partial \mathcal{H} + 1$ edge through a corner of \mathcal{H}.
- ...
- 3 edges through corners of \mathcal{H}.
Relative Length

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

3 vertices on $\partial \mathcal{H}$.
2 vertices on $\partial \mathcal{H} + 1$ edge through a corner of \mathcal{H}.
...
3 edges through corners of \mathcal{H}.
Relative Length

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $\text{relative length}(\mathcal{T} \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom α.
Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $\text{relative length}(\mathcal{T} \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Case: 3 vertices on $\partial \mathcal{H}$.

Relative Length
Relative Length

Lemma 4. There is an optimal H bounded by 3 objects.

Fix 2 bounding objects, consider $\text{relative length}(T \cap H)$ as a function Ψ of the remaining degree of freedom a.

Case: 3 vertices on ∂H.
Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $\text{relative length}(\mathcal{T} \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Case: 3 vertices on $\partial \mathcal{H}$.

Relative Length
Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $\text{relative length}(T \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Case: 3 vertices on $\partial \mathcal{H}$.
Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $\text{relativelength}(T \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Case: 3 vertices on $\partial \mathcal{H}$.
Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $\text{relativelength}(\mathcal{T} \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Case: 3 vertices on $\partial \mathcal{H}$.
Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider \(\text{relative length}(T \cap \mathcal{H}) \) as a function Ψ of the remaining degree of freedom a.

Case: 3 vertices on $\partial \mathcal{H}$.

\(O(n) \) breakpoints/events: \(O(n) \) time.
Lemma 4. There is an optimal H bounded by 3 objects.

Fix 2 bounding objects, consider $\text{relativelength}(T \cap H)$ as a function Ψ of the remaining degree of freedom a.

Case: 3 vertices on ∂H.

- $O(n)$ breakpoints/events: $O(n)$ time.
- $O(n^2)$ pairs

Total: $O(n^3)$ time.
Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $\text{relativelength}(\mathcal{T} \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Case: 3 vertices on $\partial \mathcal{H}$.

- $O(n)$ breakpoints/events: $O(n)$ time.
- $O(n^2)$ pairs

Total: $O(n^3)$ time.

Same for the other cases.

So $O(n^3)$ time to find a \mathcal{H} that maximizes $\text{relativelength}(\mathcal{T} \cap \mathcal{H})$.
Hotspot Shapes

Can we handle hotspots of a different shape?
Hotspot Shapes

Can we handle hotspots of a different shape?

\mathcal{H} is a convex polygon of given shape: yes
Hotspot Shapes

Can we handle hotspots of a different shape?

\(\mathcal{H} \) is a convex polygon of given shape: yes
\(\mathcal{H} \) is a polygon of given shape: no
Hotspot Shapes

Can we handle hotspots of a different shape?

\(\mathcal{H} \) is a convex polygon of given shape: yes
\(\mathcal{H} \) is a polygon of given shape: no
\(\mathcal{H} \) has fixed but curved boundaries: no
<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can we handle hotspots of a different shape?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathcal{H} is a convex polygon of given shape:</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>\mathcal{H} is a polygon of given shape:</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>\mathcal{H} has fixed but curved boundaries:</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>The shape of \mathcal{H} is not predefined:</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>
Can we handle hotspots of a different shape?

\(\mathcal{H} \) is a polygon of given shape: no
\(\mathcal{H} \) has fixed but curved boundaries: no
The shape of \(\mathcal{H} \) is not predefined: no
Can we handle hotspots of a different shape?

\(\mathcal{H}\) is a polygon of given shape: no
\(\mathcal{H}\) has fixed but curved boundaries: no
The shape of \(\mathcal{H}\) is not predefined: no
Can we handle hotspots of a different shape?

\mathcal{H} is a polygon of given shape: no
\mathcal{H} has fixed but curved boundaries: no
The shape of \mathcal{H} is not predefined: no

More variations for multiple entities:

Find a smallest hotspot s.t. all entities spend at least L time in \mathcal{H}.
Can we handle hotspots of a different shape?

\(\mathcal{H} \) is a polygon of given shape: no
\(\mathcal{H} \) has fixed but curved boundaries: no
The shape of \(\mathcal{H} \) is not predefined: no

More variations for multiple entities:

Find a smallest hotspot s.t. all entities spend at least \(L \) time in \(\mathcal{H} \).
Total Length, Fixed Length

Goal: minimize the side length of \mathcal{H} for a fixed trajectory length L.

Use parametric search, using the Fixed-Size algorithm as a decision algorithm.

Running time: $O(n^2 \log^2 n)$.
Contiguous Length, Fixed Length

Find \mathcal{H} by finding $\mathcal{T}[p, q]$.
Contiguous Length, Fixed Length

Find \mathcal{H} by finding $\mathcal{T}[p, q]$.
Contiguous Length, Fixed Length

Find \mathcal{H} by finding $\mathcal{T}[p, q]$.
Contiguous Length, Fixed Length

Find \mathcal{H} by finding $T[p, q]$.
Contiguous Length, Fixed Length

Find \mathcal{H} by finding $\mathcal{T}[p, q]$.

Consider $\maxlength(\mathcal{T} \cap \mathcal{H})$ as a function ψ depending on t_p.
Contiguous Length, Fixed Length

Find \mathcal{H} by finding $T[p, q]$.

Consider $\text{maxlength}(T \cap \mathcal{H})$ as a function ψ depending on t_p.

Lemma 5. ϕ is piecewise linear, its break points corresponding to hotspots \mathcal{H} s.t.

...
Contiguous Length, Fixed Length

Find \(\mathcal{H} \) by finding \(T[p, q] \).

Consider \(\text{maxlength}(T \cap \mathcal{H}) \) as a function \(\psi \) depending on \(t_p \).

Lemma 5. \(\phi \) is piecewise linear, its break points corresponding to hotspots \(\mathcal{H} \) s.t.

...

Compute \(\phi \) at all break points and select the maximum.

Running time: \(O(n \log n) \)