HOMOTOPY MEASURES FOR REPRESENTATIVE TRAJECTORIES

Erin Chambers

Irina Kostitsyna

Maarten Löffler

Frank Staals
TRAJECTORIES
Let P be n points in the plane
TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away
TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away
TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away
Let P be n points in the plane
Now suppose your points run away
Let P be n points in the plane

Now suppose your points run away
Let P be n points in the plane
Now suppose your points run away
P traces a set of n trajectories: curves in \mathbb{R}^2
• Trajectories are ubiquitous
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer
Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer
TRAJECTORIES

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer
TRAJECTORIES

• Trajectories are ubiquitous
 • GPS technology
 • Cyclists
 • Hurricanes
 • Deer

• Trajectories are interesting
 • Many different analysis tasks
REPRESENTATIVE TRAJECTORY

- Problem
 - Suppose we have lots of trajectories
• Problem
 • Suppose we have lots of trajectories
 • Suppose we want to extract significant patterns
Representative Trajectory

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns
- Solution
REPRESENTATIVE TRAJECTORY

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns

- Solution
 - Cluster the trajectories
REPRESENTATIVE TRAJECTORY

• Problem
 • Suppose we have lots of trajectories
 • Suppose we want to extract significant patterns

• Solution
 • Cluster the trajectories
 • Pick a good representative for each cluster
Suppose we have lots of trajectories
Suppose we want to extract significant patterns

Solution
Cluster the trajectories
Pick a good representative for each cluster
Keep only the representatives
REPRESENTATIVE TRAJECTORY

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns

- Solution
 - Cluster the trajectories
 - Pick a good representative for each cluster
 - Keep only the representatives

- But what is a good representative?
REPRESENTATIVE TRAJECTORY

- Input: a set of ‘similar’ trajectories
 - Sort of the same shape
REPRESENTATIVE TRAJECTORY

- Input: a set of ‘similar’ trajectories
 - Sort of the same shape
- Output: a representative trajectory
Input: a set of ‘similar’ trajectories
 • Sort of the same shape

Output: a representative trajectory
 • Should also have sort of the same shape
REPRESENTATIVE TRAJECTORY

- **Input:** a set of ‘similar’ trajectories
 - Sort of the same shape

- **Output:** a representative trajectory
 - Should also have sort of the same shape
 - Shape should represent the whole set of input trajectories
REPRESENTATIVE TRAJECTORY

- **Input:** a set of ‘similar’ trajectories
 - Sort of the same shape

- **Output:** a representative trajectory
 - Should also have sort of the same shape
 - Shape should represent the whole set of input trajectories
OBVIOUS REPRESENTATIVES
OBVIOUS REPRESENTATIVES

- Use one of the input trajectories
OBVIOUS REPRESENTATIVES

- Use one of the input trajectories
- There may not be any single good representative!
OBVIOUS REPRESENTATIVES

- Use one of the input trajectories
 - There may not be any single good representative!

- Pick the mean trajectory
OBVIOUS REPRESENTATIVES

- Use one of the input trajectories
 - There may not be any single good representative!

- Pick the mean trajectory
 - May interfere with environment!
OBVIOUS REPRESENTATIVES

- Use one of the input trajectories
 - There may not be any single good representative!

- Pick the mean trajectory
 - May interfere with environment!

- Use pieces of different trajectories
MEDIAN TRAJECTORIES

- Buchin et.al. [ESA,2010] present two such representatives:
MEDIAN TRAJECTORIES

- Buchin et.al. [ESA,2010] present two such representatives:
 - Start in the middle, switch at every intersection
MEDIAN TRAJECTORIES

- Buchin et.al. [ESA,2010] present two such representatives:
 - Start in the middle, switch at every intersection
 - Mark important faces, pick the median that passes on "the right side" of each face.
OUR APPROACH
OUR APPROACH

- Trajectories are just curves
OUR APPROACH

- Trajectories are just curves
 - Arrangement of curves forms a graph
OUR APPROACH

- Trajectories are just curves
 - Arrangement of curves forms a graph
 - Edges are directed
OUR APPROACH

- Trajectories are just curves
 - Arrangement of curves forms a graph
 - Edges are directed

- Output r is a path in this graph
OUR APPROACH

- Trajectories are just curves
 - Arrangement of curves forms a graph
 - Edges are directed

- Output \(r \) is a path in this graph

- Define the quality of a path?
OUR APPROACH

- Trajectories are just curves
 - Arrangement of curves forms a graph
 - Edges are directed

- Output r is a path in this graph

- Define the quality of a path?
 - We define a distance measure between r and all trajectories.
OUR APPROACH

- Let D be a distance measure between two curves
OUR APPROACH

- Let D be a distance measure between two curves

\[D(r) = \sum_{T \in \mathcal{T}} D(r, T) \]

\[M(r) = \max_{T \in \mathcal{T}} D(r, T) \]
OUR APPROACH

• Let D be a distance measure between two curves
 • We use Homotopy Area

• $D(r) = \sum_{T \in \mathcal{T}} D(r, T)$

• $M(r) = \max_{T \in \mathcal{T}} D(r, T)$
HOMOTOPY AREA??????
\[D(A, B) = \inf_{H \in \mathcal{H}(A, B)} \int_{u \in [0, 1]} \int_{w \in [0, 1]} \left| \frac{dH}{du} \times \frac{dH}{dw} \right| du \, dw, \]

where \(\mathcal{H}(A, B) = \ldots \)
HOMOTOPY AREA? ? ? ? ?

- \(D(A, B) = \) the minimum area that we have to sweep curve \(A \) over to transform it into \(B \).
HOMOTOPY AREA??????

- \(D(A, B) = \) the minimum area that we have to sweep curve \(A \) over to transform it into \(B \).
- Why homotopy area?
HOMOTOPY AREA???

- \(D(A, B) \) = the minimum area that we have to sweep curve \(A \) over to transform it into \(B \).
- Why homotopy area?
 - it does not need a parametrization of the curves.
HOMOTOPY AREA

- $D(A, B) =$ the minimum area that we have to sweep curve A over to transform it into B.
- Why homotopy area?
 - it does not need a parametrization of the curves.
 - robust against outliers
HOMOTOPY AREA

- $D(A, B) =$ the minimum area that we have to sweep curve A over to transform it into B.
- Why homotopy area?
 - it does not need a parametrization of the curves.
 - robust against outliers
 - tries to capture important faces automatically
HOMOTOPY AREA

- We assume that our trajectories:
 - start in s and end in t
We assume that our trajectories:
- start in s and end in t
- are simple
RESULTS

- Finding r^* that minimizes
 - $\mathcal{M}(r) = \max_{T \in \mathcal{T}} D(r, T)$
 - $D(r) = \sum_{T \in \mathcal{T}} D(r, T)$
RESULTS

- Finding r^* that minimizes
 - $\mathcal{M}(r) = \max_{T \in \mathcal{T}} D(r, T)$ is NP-hard
 - $\mathcal{D}(r) = \sum_{T \in \mathcal{T}} D(r, T)$
RESULTS

- Finding r^* that minimizes
 - $M(r) = \max_{T \in \mathcal{T}} D(r, T)$
 is NP-hard, even for 2 x-monotone trajectories
 - $D(r) = \sum_{T \in \mathcal{T}} D(r, T)$
RESULTS

- Finding r^* that minimizes
 - $M(r) = \max_{T \in \mathcal{T}} D(r, T)$ is NP-hard, even for 2 x-monotone trajectories
 - $D(r) = \sum_{T \in \mathcal{T}} D(r, T)$ is NP-hard
RESULTS

- Finding r^* that minimizes
 - $\mathcal{M}(r) = \max_{T \in \mathcal{T}} D(r, T)$
 is NP-hard, even for 2 x-monotone trajectories
 - $\mathcal{D}(r) = \sum_{T \in \mathcal{T}} D(r, T)$
 is NP-hard, even for 3 trajectories
RESULTS

- Finding r^* that minimizes
 \[M(r) = \max_{T \in T} D(r, T) \]
 is NP-hard, even for 2 x-monotone trajectories

- $D(r) = \sum_{T \in T} D(r, T)$
 is NP-hard, even for 3 trajectories

 Solvable efficiently when the trajectories from a DAG
MINIMIZING D

- Suppose that
MINIMIZING D

- Suppose that
- the trajectories are x-monotone
MINIMIZING \mathcal{D}

- Suppose that
 - the trajectories are x-monotone

- We can rewrite $\mathcal{D}(r)$ to
 $$\mathcal{D}(r) \simeq \int \sum_{T \in \mathcal{T}} |r(x) - T(x)| \, dx$$
MINIMIZING \mathcal{D}

- Suppose that
 - the trajectories are x-monotone

- We can rewrite $\mathcal{D}(r)$ to

 $$
 \mathcal{D}(r) \equiv \int_x \sum_{T \in \mathcal{T}} |r(x) - T(x)| \, dx
 $$
MINIMIZING \mathcal{D}

- Suppose that
 - the trajectories are x-monotone

- We can rewrite $\mathcal{D}(r)$ to

$$
\mathcal{D}(r) \simeq \int_x \sum_{T \in \mathcal{T}} |r(x) - T(x)| \, dx
$$
MINIMIZING \mathcal{D}

- Suppose that
 - the trajectories are x-monotone

- We can rewrite $\mathcal{D}(r)$ to
 $$\mathcal{D}(r) \leq \int \sum_{T \in T} |r(x) - T(x)| \, dx$$

- Let r^* be the the $n/2$ level.
MINIMIZING \mathcal{D}

- Suppose that
 - the trajectories are x-monotone

- We can rewrite $\mathcal{D}(r)$ to
 \[\mathcal{D}(r) \preceq \int_x \sum_{T \in \mathcal{T}} |r(x) - T(x)| \, dx \]

- Let r^* be the $n/2$ level.
 - r^* minimizes \mathcal{D}
MINIMIZING \mathcal{D}

- Suppose that
 - the trajectories are x-monotone

- We can rewrite $\mathcal{D}(r)$ to
 \[\mathcal{D}(r) \leq \int \sum_{T \in \mathcal{T}} |r(x) - T(x)| \, dx \]

- Let r^* be the the $n/2$ level.
 - r^* minimizes \mathcal{D}
 - r^* is the simple median
Suppose that
• the trajectories form a DAG
• \(s \) and \(t \), lie in the outer face
MINIMIZING \mathcal{D}

- Suppose that
 - the trajectories form a DAG
 - s and t, lie in the outer face
- We can rewrite $\mathcal{D}(r)$ to

\[
\mathcal{D}(r) \subseteq \int_{\lambda} \sum_{T \in T} \text{curvelength}(r, T, \lambda) \, d\lambda
\]
MINIMIZING \mathcal{D}

- Suppose that
 - the trajectories form a DAG

- Transform the space s.t. s and t lie on the outer face.
FUTURE WORK

• Done?
FUTURE WORK

• Done?
• No
 • How to handle larger class of graphs?
FUTURE WORK

- Done?
- No
 - How to handle larger class of graphs?
FUTURE WORK

- Done?
- No
 - How to handle larger class of graphs?
 - Lift to space in which graph is a DAG
FUTURE WORK

• Done?
• No
 • How to handle larger class of graphs?
 • Lift to space in which graph is a DAG
 • How to define “corridor”?
FUTURE WORK

- Done?
- No
 - How to handle larger class of graphs?
 - Lift to space in which graph is a DAG
 - How to define “corridor”?

Thank You!
Reduction from PARTITION:

Partition a set of integers $S = \{a_1, a_2, \ldots, a_n\}$ into two subsets S_1 and S_2 with equal total sums:

$$\sum_{a \in S_1} a = \sum_{a \in S_2} a$$