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Find all maximal groups: sets of entities that travel together
during a time interval of length at least
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Lower bound Upper bound Algorithm
No obstacles  Q(mn?) O(mn?) O(tn?logn)
Simple 5 5 5 9
polygon Q(mn?) O(tn*) O(tn*(log” m+logn)+m)
@
Well-spaced
obstach:es Q(7(n? + nm)) O(1(n? + mAg(n))) O(tn?mlogn)
G‘.‘\‘l Q(r(n? O( {n? +m?A4(n)
enera T(n* + Tminyn® +m A4 (n), 9 9 9
obstacles nmmin{n, m})) n?m?}) O(rnZm=logn +m=logm)

n = # entities

T = # vertices in each trajectory Aq(n) = max length of a
. Davenport-Schinzel sequence of
m = # obstacle vertices order 4 on n symbols.
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O(7A4(n)) per vertex
















At any time, W; corresponds to at most one e-connected set
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