
Terrain Visibility with Multiple Viewpoints ?

Ferran Hurtado1, Maarten Löffler2, Inês Matos1,4, Vera Sacristán1, Maria Saumell5,
Rodrigo I. Silveira3,1, and Frank Staals2

1 Dept. Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Spain
2 Dept. of Information and Computing Sciences, Universiteit Utrecht, The Netherlands

3 Dept. de Matemática, Universidade de Aveiro, Portugal
4 Dept. de Matemática & CIDMA, Universidade de Aveiro, Portugal

5 Département d’Informatique, Université Libre de Bruxelles, Belgium

Abstract. We study the problem of visibility in polyhedral terrains in the presence
of multiple viewpoints. We consider three fundamental visibility structures: the
visibility map, the colored visibility map, and the Voronoi visibility map. We study
the complexity of each structure for both 1.5D and 2.5D terrains, and provide
efficient algorithms to construct them. Our algorithm for the visibility map in 2.5D
terrains improves on the only existing algorithm in this setting.

1 Introduction

Visibility problems or, to be more specific, problems regarding whether two objects
are visible from each other amidst a number of obstacles have been a hot topic in
computational geometry. In this paper we are interested in visibility on terrains. A
2.5D terrain is an xy-monotone polyhedral surface in R3. We also study 1.5D terrains:
x-monotone polygonal lines in R2. The obstacles we consider are the terrain edges or
triangles themselves. A fundamental aspect of visibility in terrains is the viewshed of a
point (i.e. the viewpoint): the (maximal) regions of the terrain that the viewpoint can see.

In a 1.5D terrain, the viewshed is almost equivalent to the visibility polygon of a
viewpoint, so well-known linear-time algorithms can be applied. In 2.5D the viewshed
is more complex (see Fig. 1). In an n-vertex terrain, the viewshed of a viewpoint
can have Θ(n2) complexity. The best algorithms known to compute it take O((n +
k) log n log log n) time [13], and O((nα(n) + k) log n) time [9], where k is the size of
the resulting viewshed, and α(n) is the inverse of the Ackermann function.

While the computation of the viewshed from one viewpoint on a terrain has been
thoroughly studied, it is surprising that a natural and important variant has been left open:
What happens if instead of one single viewpoint, one has many, say m > 1, different
? F. H., V. S., and R.I. S. were partially supported by projects Gen. Cat. DGR 2009SGR1040,

MINECO MTM2012-30951 and ESF EuroGIGA-ComPoSe - MICINN EUI-EURC-2011-4306.
M. L. and F. S. were supported by Netherlands Organisation for Scientific Research (NWO)
under project no 639.021.123 and 612.001.022. I. M. was supported by FCT project PEst-
C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690. M. S. was
supported by projects F.R.S.-FNRS - EUROGIGA NR 13604 and GAČR GIG/11/E023. R.I. S.
was partially supported by the FP7 Marie Curie Actions Individual Fellowship PIEF-GA-2009-
251235, and by FCT through grant SFRH/BPD/88455/2012.

p1 p3

p2

Fig. 1. The viewsheds of three viewpoints on a 2.5D terrain.

p3

(a) (b) (c)

p2

p3

p2

p1p1p1

p2

p3

Fig. 2. The visibility map (a), the colored visibility map (b), and the Voronoi visibility map (c).

viewpoints on the terrain? The common viewshed, or visibility map can then be defined
as the regions of the terrain that can be seen from at least one viewpoint. Computing the
viewshed from each single viewpoint and then taking the union of the m viewsheds is a
straightforward solution, but it has a high running time that does not take the final size
of the visibility map into account. Obtaining more efficient algorithms for this and other
related problems is the main focus of this paper.

To the best of our knowledge, there are no other studies in computational geometry
on the visibility map of multiple viewpoints. We are not aware of any work for 1.5D
terrains, whereas for 2.5D terrains we can only mention [6], where they essentially
overlay the m individual viewsheds without studying the complexity of the visibility
map. This results in the high running time of O(m2n4). In addition, a few papers deal
with the computation of viewsheds for multiple viewpoints for rasterized terrains [6, 11].

We would like to highlight the fact that it is not due to its lack of interest that visibility
from multiple viewpoints has been overlooked up to now. Visibility in 1.5D terrains
has been thoroughly studied from related perspectives, and in particular the problem of
placing a minimum number of viewpoints to cover a terrain has received a lot of attention
(e.g. [2, 3, 5, 7, 10]). Their theoretical interest and the fact that 1.5D terrains already pose
a difficult challenge are the main motivation behind our work in that dimension.

Regarding 2.5D, the applications are too numerous to be detailed here, so we only
present a few concrete examples. For instance, evaluating the effectiveness of a set of
fire lookout towers [4], or identifying locations for placing wind turbines so they are not
visible from “sensitive sites” like touristic points [12]. Finally, our results also apply to
other contexts like sensor networks, in which wireless devices have to be placed on a
terrain, and we have to measure the quality of the chosen device placement scheme [14].
The structures we study are particularly interesting within this context.

Problem Statement. A 2.5D terrain T consists of a set V (T) of n vertices, a set E(T)
of O(n) edges, and a set F (T) of O(n) faces. A 1.5D terrain T consists of a set V (T)
of n vertices and a set E(T) of n− 1 edges.

For any point p on the terrain T (either a 2.5D terrain or a 1.5D terrain), the viewshed
of p on T , denoted by VT (p), is the maximal set of points on T that are visible from p.
A point q is visible from p if and only if the line segment pq does not intersect any point

2

strictly below the terrain surface (intuitively, this corresponds to placing the viewpoints
some small ε > 0 above the terrain). Note that our definition of visibility is symmetric,
and that viewpoints have unlimited sight. The viewshed VT (P) of a set of viewpoints P
is the set of points visible from at least one viewpoint in P .

Given a set of viewpoints P , we define the Voronoi viewshedWT (p,P) of a view-
point p ∈ P as the set of points in the viewshed of p that are closer to p than to any
other viewpoint that can see them. More precisely, WT (p,P) = VT (p) ∩ {x | x ∈
T ∧ closestT (x,P) = p}, where closestT (x,P) denotes the closest (in terms of the
Euclidean distance) viewpoint in P that can see a point x on T .

We study three fundamental terrain visibility structures regarding multiple viewpoints
for 1.5D and 2.5D terrains. These structures are illustrated in Fig. 2.

The visibility map Vis(T ,P) is a subdivision of the terrain T into a visible region
RV = VT (P) =

⋃
p∈P VT (p) and an invisible region RI = T \RV .

The colored visibility map ColVis(T ,P) is a subdivision of the terrain T into
maximally connected regions R, each of which is covered by exactly the same subset of
viewpoints P ′ ⊆ P . Each region R is a (maximally connected) subset of

⋂
p∈P′ VT (p)

and we have that R ∩⋃p∈P\P′ VT (p) = ∅.
The Voronoi visibility map VorVis(T ,P) is a subdivision of the terrain T into maxi-

mally connected regions, each of which is a subset of the Voronoi viewshedWT (p,P)
of a viewpoint p ∈ P .

We denote the size, that is, the total complexity of all its regions, of Vis(T ,P),
ColVis(T ,P), and VorVis(T ,P), by k, kc, and kv , respectively.

For simplicity, we assume that P is a set of m viewpoints placed on terrain vertices,
thus m ≤ n. We consider this a reasonable assumption, since in most applications the
number of terrain vertices is considerably larger than the number of viewpoints.

Results. We present a comprehensive study of the visibility structures defined above.
We analyze the complexity of all the structures and propose algorithms to compute them.
Our results are summarized in Table 1. Regarding 1.5D terrains, all our algorithms avoid
computing individual viewsheds. Vis(T ,P) is computed in nearly optimal running time,
while the algorithms for ColVis(T ,P) and VorVis(T ,P) are output-sensitive. Obtain-
ing the latter algorithm, whose running time depends on kc and kv, was surprisingly
challenging, and required using several subtle geometric properties of the problem.

As for 2.5D terrains, we prove with a careful analysis—interesting on its own—that
the maximum complexity of Vis(T ,P) and ColVis(T ,P) is much less than the overlay

1.5D Terrains 2.5D Terrains
Structure Max. size Computation time Max. size Computation time

Vis Θ(n) O(n logn) O(m3n2) O(m(nα(n) + kc) logn)
ColVis Θ(mn) O(n+ (m2 + kc) logn) O(m3n2) O(m(nα(n) + kc) logn)
VorVis Θ(mn) O(n+ (m2 + kc) logn+

kv(m+ logn logm))
O(m4n2) O(m(nα(n) + kc) logn)

Table 1. Complexity and computation time of the three visibility structures.

3

e

(a) (b)

Fig. 3. (a) Edge e contains one invisible connected portion between two visible ones. (b) Every
other edge has four different regions of ColVis(T ,P) and four different regions of VorVis(T ,P).

of the viewsheds, as implicitly assumed in previous work [6]. Using that, we show how
a combination of well-known algorithms can be used to compute the visibility structures
reasonably fast. Omitted proofs and details are given in the full version of this paper [8].

2 1.5D Terrains

2.1 Complexity of the Visibility Structures

In 1.5D our visibility structures can be seen as subdivisions of the x-axis into intervals.

Theorem 1. Given a 1.5D terrain T : Vis(T ,P) has maximum complexity Θ(n), and
ColVis(T ,P) and VorVis(T ,P) both have maximum complexity Θ(mn).

Proof (Sketch). There are two types of points of T that contribute to the complexity of
Vis(T ,P): vertices of T , and points where the T goes from visible to invisible or vice
versa. There are n points of the first type. The points of the second type amount to O(n),
since it is easy to see that the interior of every edge e ∈ E(T) contains at most two such
points (see Fig. 3(a) for an example). Consequently, k is Θ(n).

As for ColVis(T ,P), notice that once a viewpoint sees a given point q on an edge
e ∈ E(T), it must see the whole segment from q to one of its endpoints. Hence, e can
be split into at most m+ 1 different regions of ColVis(T ,P). Therefore the complexity
of ColVis(T ,P) is O(mn). The example in Fig. 3(b) shows that this is tight.

Finally, let us focus on VorVis(T ,P). For a given edge e ∈ E(T), VorVis(T ,P)
restricted to e has at most 4m− 2 regions (Lemma 1 of [8]), thus implying the upper
bound. The lower bound can be achieved by a configuration of viewpoints on a particular
terrain T that can be repeated so that every other edge of T has as many Voronoi regions
as viewpoints, for arbitrary n and m. An example is shown in Fig. 3(b). ut

2.2 Algorithms to Construct the Visibility Structures

Construction of the Visibility Map. To construct the visibility map we first compute
the left- and right-visibility maps, and then merge them. The left(right)-visibility map
partitions T into two regions: the visible and the invisible portions of the terrain, where
visible means visible from a viewpoint to the left (right) of that point of the terrain

4

In the following we explain the construction of the left-visibility map (thus, visible
stands for left-visible). The algorithm uses the following property of 1.5D terrains, which
is a consequence of the so-called order claim (See Claim 2.1 in [2]):

Observation 1 Let q ∈ T be a point visible from the left by pi and pj , with pi to the left
of pj . For any r ∈ T to the right of q, if pi does not see r, then pj cannot see r either.

The algorithm sweeps the terrain from left to right while maintaining the leftmost
visible viewpoint (if any), which we call the active viewpoint. The algorithm also stores
a priority queue of events that comprises the x-coordinates of the vertices (vertex events)
and the points of the terrain where a viewpoint becomes visible (viewpoint events).
Initially we add an event for each terrain vertex and viewpoint, the latter corresponding
to the position of the viewpoint on the terrain. We process the events sorted by their x-
coordinate. When two events have the same x-coordinate, viewpoint events are processed
first. Let pa be the active viewpoint (if no viewpoint is visible, we set pa = ⊥).

(i) Viewpoint event, for a viewpoint pi. If pa = ⊥, then a new visibility region starts.
If pa = ⊥ or pi is to the left of pa, then pi becomes the active viewpoint.

(ii) Vertex event, for a vertex v. If the active viewpoint pa becomes invisible after v,
we compute where pa becomes visible again by a ray-shooting query, and add a viewpoint
event there. If there was a viewpoint event at v as well, this viewpoint becomes the active
viewpoint. Otherwise, the current visibility region ends at v.

The correctness of the method follows from Obs. 1, which guarantees that it is
enough to keep track of only the leftmost visible viewpoint. The following theorem is
proved in the full version.

Theorem 2. Given a 1.5D terrain T , the visibility map Vis(T , P) can be constructed
in O(n log n) time.

Construction of the Colored Visibility Map. The computation of the colored visibility
map is similar to that of Vis(T , P), with the extra complication of having to maintain all
visible viewpoints during the sweep. We show in the full version that we can still handle
each event in O(log n) time. In principle, the event processing time can be charged
to the output size kc –since each viewpoint is likely to generate a new region when it
reappears. However, it can happen that several viewpoints reappear at exactly the same
point, generating a single region in ColVis. With some analysis we show that the total
number of these situations is O(m2), leading to the following result.

Theorem 3. Given a 1.5D terrain T , the colored visibility map ColVis(T , P) can be
constructed in O(n+ (m2 + kc) log n) time.

Construction of the Voronoi Visibility Map.

Divide and Conquer Approach. A way to construct VorVis(T ,P) consists in dividing
the set of viewpoints into two subsets, computing the Voronoi visibility map of the two
subsets recursively, and merging the two maps. This takes O(mn logm) time.

5

An Output-Sensitive Algorithm. Even though VorVis(T ,P) can have Θ(mn) complex-
ity, it seems unlikely that such high complexity arises often in practical applications. In
the following we present an alternative algorithm that essentially extracts the Voronoi vis-
ibility map from the colored visibility map. Its running time depends on the complexity
of the two structures, and avoids the fixed O(mn) term of the previous method.

The algorithm sweeps the terrain from left to right. During this sweep, we maintain
three data structures: (i) a doubly-linked list with the vertices of ColVis(T ,P), ordered
from left to right, (ii) a list P ′ with the currently visible viewpoints, and (iii) for each
pi ∈ P ′, the starting point ai of the last region in which pi is visible encountered so far
in the sweep. We will use T [a, c], for a, c on T and x(a) < x(c), to denote the closed
portion of the terrain between a and c. The algorithm produces VorVis(T ,P) as a list
of interval, viewpoint pairs ([a, c], pi), such that pi is the closest viewpoint to all points
in T [a, c]. If T [a, c] is not visible from any viewpoint, pi is set to ⊥.

Our algorithm uses the following two functions, whose implementation is described
later. ISALWAYSCLOSER([a, c], p1, p2) determines whether p1 is always closer than
p2 in T [a, c], assuming both viewpoints are visible throughout T [a, c]. FIRSTREGION-
CHANGE([a, c], p1,P ′) assumes that p1 is visible throughout T [a, c] and is the closest
visible viewpoint at a; it returns the leftmost point in T [a, c] where p1 stops being the
closest visible viewpoint from P ′ (or the end of the interval, if that never happens).

We process T in a number of iterations. Each iteration starts at the leftmost point u
of a new Voronoi region, with P ′ containing the viewpoints that are visible from u.

If P ′ = ∅, then the region starting at u and ending at the start point v of the next
region in ColVis(T ,P) is not visible from any viewpoint. We report the region [u, v]
with ⊥, and move forward (towards the right) until v, where a new Voronoi region, and
thus a new iteration, starts.

If P ′ 6= ∅, we compute the closest visible viewpoint in O(m) time; if there is more
than one, we move infinitesimally to the right of u, and compute the closest visible
viewpoint there. Without loss of generality, we assume that the closest visible viewpoint
is p1. For all viewpoints pi ∈ P ′, we set ai := u. We now start traversing the terrain,
from u towards the right. At a point q, we might find several events from ColVis:

1. A viewpoint pj becomes visible. We update P ′, set aj := q, and continue the sweep.
2. A viewpoint pj 6= p1 becomes invisible. We update P ′ and proceed depending on

two subcases:

(a) ISALWAYSCLOSER([aj , q], p1, pj) = TRUE. Continue traversing the terrain.
(b) ISALWAYSCLOSER([aj , q], p1, pj) = FALSE. There is a point in T [aj , q] at

which pj is closer than p1, so at least one Voronoi region starts between
u and q. We find the leftmost region change v by calling FIRSTREGION-
CHANGE([u, q], p1,P ′), and report [u, v] as a Voronoi region with p1 as closest
point. We now backtrack our sweep, i.e. we traverse the terrain from right to left
(updating P ′ as we encounter events), until we reach v, and start a new Voronoi
region, and thus a new iteration of our algorithm at v.

3. Viewpoint p1 becomes invisible. We update P ′, and compute ISALWAYSCLOSER
([ai, q], p1, pi), for all pi ∈ P ′. If the answer is TRUE for all viewpoints in P ′, we
report the region [u, q] with p1 as closest viewpoint, and start a new Voronoi region

6

and a new iteration at q. Otherwise, there is at least one Voronoi region that starts
between u and q. We handle this analogously to case 2(b).

After processing the events of type 2 at the rightmost vertex of the terrain, we have
successfully computed VorVis(T ,P). Since we backtrack our sweep in step 2, it may
be the case that we (unnecessarily) visit events from ColVis(T ,P) multiple times. We
can avoid this, by augmenting this step as follows. Consider step 2a. We notice that
there cannot be a Voronoi region of pj between aj and q (since at least p1 is closer and
visible). So we can remove the events of pj becoming visible at aj and invisible at q
from ColVis(T ,P). We remove q in step 2a itself. Event aj is removed if we encounter
it while backtracking in step 2b: at each event of type 1, i.e. a viewpoint pj becoming
visible, we check if pj is in P ′. If not, we must have removed its corresponding endpoint
(i.e. q) from ColVis(T ,P). Thus we can also remove aj .

As for the auxiliary functions, ISALWAYSCLOSER([aj , q], p1, pj) can be imple-
mented to run in O(log n) time by doing a ray-shooting query, where the ray is the
bisector of p1 and pj . However, it is possible to answer this question faster.

Lemma 1. Consider two points r and t such that all of T [r, t] is visible from two
viewpoints p1 and p2. We can decide whether there exists some point in T [r, t] that is
closer to p2 than to p1 in O(1) time.

FIRSTREGIONCHANGE([u, q], p1,P ′) can be implemented to run in O(m log n)
time as follows: For every pi ∈ P ′, and using a ray-shooting query, compute the leftmost
point (if any) on T [ai, q] that is closer to pi than to p1. Then keep the leftmost point u′

among all the points encountered. Again, it is possible to do this faster:

Lemma 2. Let [u, q] be an interval such that p1 ∈ P is visible in all T [u, q] and is
the closest visible viewpoint at u. Let P ′ be a set of viewpoints such that for each
pi ∈ P ′, T [ai, q] is visible from pi, for some ai such that x(u) ≤ x(ai). Then in
O(m+ log n logm+n′) time we can find the leftmost point u′ ∈ T [u, q] such that at u′

there is a change of region in VorVis(T ,P ′), for n′ the number of vertices in T [u, u′].

The proofs can be found in the full version. We obtain:

Theorem 4. Given a 1.5D terrain T , the Voronoi visibility map VorVis(T ,P) can be
computed in O(n+ (m2 + kc) log n+ kv(m+ log n logm)) time.

3 2.5D Terrains

3.1 Complexity of the Visibility Structures

Proposition 1. The visibility map Vis(T , P) of a 2.5D terrain T can have complexity
Ω(m2n2).

7

p

↑up

↑(u,v)pu

v

(a)

p

(b)

p

(c)

Fig. 5. (a) A ray and a vase. (b) The top-down view of a terrain T with a single viewpoint p. The
domain is decomposed in the viewshed Vis(T , p) and a collection of vases. (c) a 3D view of T
and the vases of p.

Proof. We present a terrain that consists of a flat (horizontal)
rectangle, the courtyard, surrounded by a thin wall. We
make O(n) (almost) vertical incisions, or windows, in the
northern and western wall. We place half our viewpoints
behind windows in the northern wall, and the other half
behind windows in the western wall. Each viewpoint is
placed so that it can see through O(n) windows into the
courtyard, see Fig. 4. It follows that the visibility map inside
the courtyard forms an O(mn)×O(mn) grid. ut

In order to establish an upper bound on the complexity
of the visibility maps, we start with the most general case,
in which T is actually an arbitrary polyhedron.

Fig. 4. Viewpoints are
shown as white circles and
rays indicate the part of
the terrain visible from the
viewpoint.

LetM be a polyhedron, let v be a vertex ofM, and let p ∈ P be a viewpoint. We
define the ray of p and v, denoted ↑vp, to be the half line that starts at v and has vector−→pv. Similarly, let p ∈ P be a point and e = uv be an edge ofM. The vase of p and
e, denoted ↑ep, is the region in R3 bounded by e, ↑up , and ↑vp (see Fig. 5(a)). The set of
all vases originating from p is denoted ⇑ (p) = {↑ep| e ∈ E(M)}. Assuming general
position, we have:

Observation 2 Vis(M,P) can have three types of vertices: (1) vertices of M, (2)
intersections between an edge ofM and a vase, and (3) intersections between a triangle
ofM and two vases.6

Theorem 5. The visibility map Vis(M,P) of a polyhedronM has complexityO(m2n3).

Proof. Each vase comes from a viewpoint in P and an edge in E(M). Clearly, |V (M)|,
|E(M)|, |F (M)| ∈ O(n). So, the number of vertices of type (1), (2), and (3) is at most
O(n), O(mn2), and O(m2n3), respectively. ut

Next, we show that ifM is a terrain, then the number of vertices of type (3) can only
be O(m3n2). Given any object B ∈ R3, we denote by B the vertical projection of B to
R2. Furthermore, we define S1 ⊕ S2 to be the overlay of subdivisions S1 and S2. Let ↑es

6 It is worth noting that there is a fourth possible type of vertex: an intersection of three vases.
However, such a vertex does not lie on M, so it does not appear in the visibility map.

8

and ↑ft be two vases. The intersection of these two vases is a line segment (or half line),
which we denote by e

s×f
t . We call this a pyramid ray.

Observation 3 Consider k planar subdivisions S1, S2, . . . , Sk, and let S =
⊕k

i=1 Si

be their overlay. Any line ` has at most O(
∑k

i=1 |Si|) intersections with S.

Lemma 3. Let R be the set of pyramid rays created by P on a 2.5D Terrain T . Every
edge e ∈ E(T) intersects at most O(m3n) rays from R.

Proof. Let Xi be the subdivision of R2 that we obtain by vertically projecting the upper
envelope of T and all vases in ⇑ (pi). Fig. 5(b) shows an example. Any pyramid ray
r ∈ R is the intersection of one vase from ⇑ (pi) and one vase from ⇑ (pj), for some
i 6= j. This means that r is contained in a cell of Xi ⊕Xj . Let X =

⊕m
i=1Xi. Then

each cell in X is contained in at most m different projected vases, hence, it contains at
most

(
m
2

)
(pieces of) projected pyramid rays.

There are O(n) vases in ⇑(pi), so Xi has O(n) vertices. From Obs. 3 it follows that
any line —and therefore any edge e ∈ E(T)— intersects the edges of X at most O(mn)

times. This means e intersects at most O(mn) cells, and therefore also at most O(m3n)
pyramid rays in R. ut

Lemma 4. Vis(T ,P) contains at most O(m3n2) vertices of type (3).

Proof. We split the vertices of Vis(T ,P) of type (3) into two subtypes. Each vertex v
(of type (3)) is associated with one pyramid ray r. Now, v is either of type (3)a, if it is
the highest vertex on r, or of type (3)b otherwise. The number of vertices of type (3)a is
at most O(m2n2), since there is at most one per ray and there are only O(m2n2) rays.
We now show the number of vertices of type (3)b is at most O(m3n2).

Let v be a vertex of Vis(T ,P) of type (3)b. It is the intersection of a ray r and a
triangle t ∈ F (T). Since v is not the highest vertex on r, there must be another vertex
w on r. Clearly, w cannot lie on t, so w must lie outside t, while v lies inside t. Thus
there must be an edge e ∈ E(P) such that r crosses e. We charge v to this intersection
between r and e. Clearly, any such intersection gets charged at most once. By Lemma 3,
there are at most O(m3n2) such intersections in total. Hence, the number of vertices of
type (3)b is also at most O(m3n2). ut

Theorem 6. Vis(T ,P), for T a 2.5D terrain, has complexity O(m3n2).

The visibility map Vis(T ,P) corresponds to the union over P of the viewsheds
of the individual viewpoints. Similarly, the colored visibility map corresponds to the
overlay of the viewsheds of the individual viewpoints in P . Therefore, Obs. 2 also holds
for the vertices of ColVis(T ,P). This implies the following result.

Theorem 7. ColVis(T ,P), for T a 2.5D terrain, has complexity O(m3n2).

Finally, we are interested in the Voronoi visibility map. VorVis(T ,P) can have
additional types of vertices: intersections of Voronoi edges with terrain triangles. We use
power diagrams: Let C = C1, .., Cm be a set of m circles in R2, and let ci and ri denote

9

the center and radius of Ci, respectively. The (2D) power diagram PD(C) is the subdivi-
sion of R2 into m regions, one for each circle, such that Ri = {x ∈ R2 s. t., for all j ∈
{1, ..,m}, pow(Ci, x) ≤ pow(Cj , x)}, where pow(Ci, x) = d2(ci, x)

2 − r2i (and
d2(·, ·) denotes the Euclidean distance in R2). The (2D) power diagram of m circles has
complexity O(m) and can be computed in O(m logm) time [1].

Let VD(P) denote the 3-dimensional Voronoi diagram of P . We observe that the
restriction of VD(P) to any single plane H in R3 corresponds to a power diagram
PD(CP) in R2: Assume without loss of generality that H is a horizontal plane at z = 0,
and let ξ ≥ maxp∈P p

2
z be some large value. Any point a ∈ H is closer to p ∈ P than to

q ∈ P if (and only if) d(a, p) = d3(a, p) ≤ d3(a, q), and hence if d3(a, p)2 ≤ d3(a, q)2.
Using that az = 0 we can rewrite this to d2(a, p)2 − (ξ − p2z) ≤ d2(a, q) − (ξ − q2z).
So if we introduce a circle Cp in CP for every viewpoint p with center p and radius
rp such that r2p = ξ − p2z then we get that a is closer to p than to q if and only if
pow(Cp, a) ≤ pow(Cq, a). Thus, we can prove:

Theorem 8. VorVis(T ,P), for T a 2.5D terrain, has complexity O(m4n2).

3.2 Algorithms to Construct the Visibility Structures

p2

p1
p3

Fig. 6. Overlay V.

Computing the (Colored) Visibility Map. Katz et al. [9] de-
veloped anO((nα(n)+k) log n) time algorithm to compute
the viewshed of a single viewpoint, where k is the output
complexity and α(n) is the extremely slowly growing in-
verse of the Ackermann function. Coll et al. [6] use this
algorithm to compute the visibility map of a 2.5D terrain
in O(m2n4) time and space. Essentially they project the
individual viewsheds onto R2, and construct the overlay
V =

⊕
p∈P VT (p) (see Fig. 6). It is then easy to construct

the (colored) visibility map from V. We use the same approach. However, using our ob-
servations from the previous section, we show that even if the viewsheds have complexity
Θ(n2), we can compute the (colored) visibility map in O(m4n2 log n) time.

Lemma 5. Given a 2.5D terrain T with n vertices and a set P of m viewpoints. The
planar subdivision V can be constructed in O(m(nα(n) + kc) log n) time.

Theorem 9. Both the visibility Vis(T ,P) and the colored visibility map ColVis(T ,P),
for T a 2.5D terrain can be computed in O(m(nα(n) + kc) log n) time.

Computing the Voronoi Visibility Map. Let F be a face of the colored visibility map
ColVis(T ,P), and let PF denote the set of viewpoints that can see F . For each such
face F we compute the intersection of F with the VD(PF). We do this via the power
diagram: i.e. consider the plane H containing F , and compute the power diagram on
H with respect to the the viewpoints in PF . This takes O(kcm logm) time in total,
since ColVis(T ,P) has O(kc) faces, and each power diagram can be computed in
O(m logm) time. Each power diagram is constrained to a single face, so we glue all
of them together and project the result onto R2. This yields a subdivision W of size
O(kcm). We now compute V in O(m(nα(n) + kc) log n) time (as described above),
and overlay it with W in O(kcm+ kc + kv) = O(kcm) time. Hence:

10

Theorem 10. The Voronoi visibility map VorVis(T ,P), for T a 2.5D terrain, can be
computed in O(m(nα(n) + kc) log n) time.

4 Final remarks

We studied visibility with multiple viewpoints on polyhedral terrains for the first time.
Our results show that considering multiple viewpoints converts classical visibility prob-
lems into much more challenging ones, even for 1.5D terrains.

Moreover, our results lead to many intriguing questions. For 1.5D terrains, is there an
efficient algorithm to construct the Voronoi visibility map whose running time does not
depend on kc? In 2.5D, the worst-case complexities are not tight; it would be interesting
to close those gaps. Algorithmically, in 2.5D the main challenge is to find an algorithm
to construct the structures directly, avoiding the computation of the individual viewsheds.
Finally, an interesting and realistic extension is when viewpoints have limited sight (i.e.
can only see up to a certain distance). We discuss this extensively in the full version.

References

1. Aurenhammer, F.: Power diagrams: Properties, algorithms and applications. SIAM J. Comput.
16(1), 78–96 (1987)

2. Ben-Moshe, B., Katz, M., Mitchell, J.: A constant-factor approximation algorithm for optimal
1.5D terrain guarding. SIAM J. Comput. 36(6), 1631–1647 (2007)

3. Bose, P., Shermer, T., Toussaint, G., Zhu, B.: Guarding polyhedral terrains. Comput. Geom.
7(3), 173–185 (1997)

4. Catry, F., Rego, F., Santos, T., Almeida, J., Relvas, P.: Fires prevention in Portugal - using GIS
to help improving early fire detection effectiveness. In: 4th Int. Wildland Fire Conf. (2007)

5. Cole, R., Sharir, M.: Visibility problems for polyhedral terrains. J. Symbolic Comput. 7(1),
11–30 (1989)

6. Coll, N., Madern, N., Sellarès, J.A.: Good-visibility maps visualization. Vis. Comput. 26(2),
109–120 (2010)

7. Gibson, M., Kanade, G., Krohn, E., Varadarajan, K.: An approximation scheme for terrain
guarding. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, LNCS, vol. 5687, pp. 140–148. Springer (2009)

8. Hurtado, F., Löffler, M., Matos, I., Sacristán, V., Saumell, M., Silveira, R.I., Staals, F.: Terrain
visibility with multiple viewpoints (2013), arXiv:1309.4323 [cs.CG]

9. Katz, M.J., Overmars, M.H., Sharir, M.: Efficient hidden surface removal for objects with
small union size. Comput. Geom. 2, 223–234 (1992)

10. King, J., Krohn, E.: Terrain guarding is NP-hard. SIAM J. Comput. 40(5), 1316–1339 (2011)
11. Lv, P., Zhang, J., Lu, M.: An optimal method for multiple observers sitting on terrain based

on improved simulated annealing techniques. In: Advances in Applied Artificial Intelligence,
LNCS, vol. 4031, pp. 373–382. Springer (2006)

12. Möller, B.: Changing wind-power landscapes: regional assessment of visual impact on land
use and population in Northern Jutland, Denmark. Appl. Energ. 83(5), 477–494 (2006)

13. Reif, J.H., Sen, S.: An efficient output-sensitive hidden surface removal algorithm and its
parallelization. In: Proc. 4th Symp. Computational Geometry. pp. 193–200. ACM (1988)

14. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12),
2292 – 2330 (2008)

11

