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Practical Approaches to Partially
Guarding a Polyhedral Terrain

Find a smallest set of guards G that can together completely see T

i.e. such that: 7 =V(G) V(G) = Ugeg V(9)

Select G from a set of potential guards P.
Guards are placed at height h above the terrain.

The part of T visible from a point (guard) g = The viewshed V(g) of g

e
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e 7 is often imprecise.

e Vegetation, weather, etc influence visibility.
So, it may be sufficient to see a large part of 7.

Find a smallest set of guards G such that
V@) =>0Q—-e)|T], for a given ¢

[T'] = the size of T’
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e / is often imprecise.

e Vegetation, weather, etc influence visibility.

e Terrain Guarding is NP-hard c " J. Sym. Comp '89)]
o NP- Hard to approximate #guards Wlthln a factor O(logn)




Results

Experiments on real terrains showing:

NP-Hard to approximate the amount of
terrain covered within a factor O(logn)

Quality guarantees for a simple greedy the #guards used for an (1 — &)-cover
algorithm

Observations to reduce the number of

potential guards in P the reduction of the #potential guards



A simple Greedy Algorithm

Algorithm GREEDYGUARD(T ¢, P)

1.

2.
3.
4

Compute the viewsheds for all guards in P.

Let G =0 and R = P.

while [V(G)] < (1 —¢)[V(P)] and R # () do
Select a guard g € R that maximizes the size [V(g) \ V(G)],
I.e., the size of the region it can cover but is not covered by G
yet.
Remove g from R and add it to G.

return ¢
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A simple Greedy Algorithm

Algorithm GREEDYGUARD(T, ¢, P)

1. Compute the viewsheds for all guards in P.

2. lLetG=0and R ="7P.

3. while [V(G)] < (1—¢)[V(P)] and R # 0 do

4 Select a guard g € R that maximizes the size [V(g) \ V(G)],
I.e., the size of the region it can cover but is not covered by G

yet.
b. Remove g from R and add it to G.
6. return g

Lemma 1. GREEDYGUARD computes an e-cover of T' = V(P) of at
most O(k/e) guards, where k is the size of an optimal 0-cover of T .

“If OPT can cover 7' with k guards, we can cover a (1 — ¢) fraction
of T with ck/e guards.”
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A simple Greedy Algorithm

Hot Springs Quinn Pk Sphinx Lakes  Split Mountain  \Wren Peak

#vertices in T
coarse ~ 1700 fine ~ 16000

covered area =~ 11.5km x 14km

P = the set of vertices of T

[V(g)] = #terrain vertices in V(g)

h = 15 meter
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Hot Springs Quinn Pk Sphinx Lakes  Split Mountain
coarse fine
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A simple Greedy Algorithm

Computing a 0.05-cover on a coarse
Wren Peak using GREEDYGUARD
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A simple Greedy Algorithm

Computing a 0.05-cover on a coarse
Wren Peak using GREEDYGUARD

Gl =10

We need another 15 guards to view
all remaining vertices!
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Dominating Guards

g strictly dominates h = V(h) C V(g)
Let H = {p1,..,pi, h} be an e-cover.

— G = {p1, .., Pk, g} is an e-cover.

=0

Observation 2. Let P be a set of potential guards. There is an optimal
(minimum size) e-cover G of V('P) such that no guard in G is strictly dominated
by any guard in P.



Dominating Guards
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Dominating Guards
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Dominating Guards
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0-Dominating Guards
g 0-dominates h = [V(h)\V(g)]/[V(h)] <6
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0-Dominating Guards

Hot Springs Quinn Pk Sphinx Lakes  Split Mountain

® coarse TS
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0-Dominating Guards
g 0-dominatess h = [V(h)\ V(9)]/[V(Rh)] <6
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0-Dominating Guards
g 0-dominates h = [V(h)\V(g)]/[V(h)] <6

g 0-dominates h
h 6-dominates g

We cannot throw away all 0-dominated guards!



0-Dominating Guards
g 0-dominates h = [V(h)\V(g)]/[V(h)] <6

extend to sets of guards G and H:
G o-dominates H = [V(H)\V(G)]/[V(H)] <9

Find a minimum size set of guards D that 0-dominate P.
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Computing D is NP-hard



0-Dominating Guards
g 0-dominates h = [V(h)\V(g)]/[V(h)] <6

extend to sets of guards G and H:
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0-Dominating Guards

Hot Springs Quinn Pk Sphinx Lakes  Split Mountain
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Using 0-Domination

Algorithm DOMINATINGGUARD(T, ¢, 6, P)

LR LS

Compute the viewsheds for all guards in P.

Compute a minimal set of guards D that 0-dominates P.

Let 6 = [V(D)] / [V(P)] be the fraction of V(P) covered by D.
Let v = (¢ — 8)/(1 —6) and let T = V(D).

return GREEDYGUARD(T, v, D)



Using 0-Domination

Algorithm DOMINATINGGUARD(T, ¢, 6, P)

LR LS

Compute the viewsheds for all guards in P.

Compute a minimal set of guards D that 0-dominates P.

Let 6 = [V(D)] / [V(P)] be the fraction of V(P) covered by D.
Let v = (¢ — 8)/(1 —6) and let T = V(D).

return ANYALGORITHMTOCOMPUTEANe-COVER(T, 7, D)
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Using 0-Domination
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Using 0-Domination

Hot Springs Quinn Pk Sphinx Lakes  Split Mountain
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e =0.05 # of guards in G was the same for all ¢.



Measure [V(g)] by area instead of #
vertices.
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