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Find a set of guards G that can together completely see T
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Guards are placed at height h above the terrain.

g4

g5

Find a smallest set of guards G that can together completely see T

Select G from a set of potential guards P.
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Practical Approaches to Partially
Guarding a Polyhedral Terrain

T

V(g)

The part of T visible from a point (guard) g = The viewshed V(g) of g

Guards are placed at height h above the terrain.

Find a smallest set of guards G that can together completely see T

g

Select G from a set of potential guards P.
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Practical Approaches to Partially
Guarding a Polyhedral Terrain

T

V(g)

The part of T visible from a point (guard) g = The viewshed V(g) of g

Guards are placed at height h above the terrain.

Find a smallest set of guards G that can together completely see T

g

i.e. such that: T = V(G) V(G) =
⋃

g∈G V(g)

Select G from a set of potential guards P.
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Practical Approaches to Partially
Guarding a Polyhedral Terrain
• T is often imprecise.

• Vegetation, weather, etc influence visibility.

So, it may be sufficient to see a large part of T .
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Practical Approaches to Partially
Guarding a Polyhedral Terrain
• T is often imprecise.

• Vegetation, weather, etc influence visibility.

So, it may be sufficient to see a large part of T .

Find a smallest set of guards G such that

JT ′K = the size of T ′
JV(G)K ≥ (1− ε) JT K, for a given ε
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• T is often imprecise.

• Vegetation, weather, etc influence visibility.

Practical Approaches to Partially
Guarding a Polyhedral Terrain

• Terrain Guarding is NP-hard [Cole & Sharir, J. Sym. Comp ’89]
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• T is often imprecise.

• Vegetation, weather, etc influence visibility.

Practical Approaches to Partially
Guarding a Polyhedral Terrain

• Terrain Guarding is NP-hard [Cole & Sharir, J. Sym. Comp ’89]

• NP-Hard to approximate #guards within a factor O(log n)
[Eidenbenz et al., Algoritmica ’00]
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Results

NP-Hard to approximate the amount of
terrain covered within a factor O(log n)

Quality guarantees for a simple greedy
algorithm

Observations to reduce the number of
potential guards in P

the #guards used for an (1− ε)-cover

the reduction of the #potential guards

Experiments on real terrains showing:
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A simple Greedy Algorithm

Algorithm GreedyGuard(T , ε,P)
1. Compute the viewsheds for all guards in P.
2. Let G = ∅ and R = P.
3. while JV(G)K < (1− ε) JV(P)K and R 6= ∅ do
4. Select a guard g ∈ R that maximizes the size JV(g) \ V(G)K,

i.e., the size of the region it can cover but is not covered by G
yet.

5. Remove g from R and add it to G.
6. return G
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A simple Greedy Algorithm

Algorithm GreedyGuard(T , ε,P)
1. Compute the viewsheds for all guards in P.
2. Let G = ∅ and R = P.
3. while JV(G)K < (1− ε) JV(P)K and R 6= ∅ do
4. Select a guard g ∈ R that maximizes the size JV(g) \ V(G)K,

i.e., the size of the region it can cover but is not covered by G
yet.

5. Remove g from R and add it to G.
6. return G

Lemma 1. GreedyGuard computes an ε-cover of T ′ = V(P) of at
most O(k/ε) guards, where k is the size of an optimal 0-cover of T ′.
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A simple Greedy Algorithm

Algorithm GreedyGuard(T , ε,P)
1. Compute the viewsheds for all guards in P.
2. Let G = ∅ and R = P.
3. while JV(G)K < (1− ε) JV(P)K and R 6= ∅ do
4. Select a guard g ∈ R that maximizes the size JV(g) \ V(G)K,

i.e., the size of the region it can cover but is not covered by G
yet.

5. Remove g from R and add it to G.
6. return G

Lemma 1. GreedyGuard computes an ε-cover of T ′ = V(P) of at
most O(k/ε) guards, where k is the size of an optimal 0-cover of T ′.

“If OPT can cover T ′ with k guards, we can cover a (1− ε) fraction
of T ′ with ck/ε guards.”
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A simple Greedy Algorithm

“If OPT can cover T ′ with k guards, we can cover a (1− ε) fraction
of T ′ with ck/ε guards.”

OPT GreedyGuard

1 1− εfraction of T ′ covered

|G| k ck/ε
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of T ′ with ck/ε guards.”

OPT GreedyGuard

1 1− ε 1− εfraction of T ′ covered

OPT

|G| k ` ck/ε
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“If OPT can cover T ′ with k guards, we can cover a (1− ε) fraction
of T ′ with ck/ε guards.”

OPT GreedyGuard

1 1− ε 1− εfraction of T ′ covered

OPT

|G| k ` ck/εck/ε



A simple Greedy Algorithm

Hot Springs Quinn Pk Sphinx Lakes Split Mountain Wren Peak

coarse fine≈ 1700
#vertices in T

≈ 16 000

h = 15 meter

P = the set of vertices of T

JV(g)K = #terrain vertices in V(g)

covered area ≈ 11.5km× 14km
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A simple Greedy Algorithm

Computing a 0.05-cover on a coarse
Wren Peak using GreedyGuard

|G| = 1
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Computing a 0.05-cover on a coarse
Wren Peak using GreedyGuard

|G| = 2



A simple Greedy Algorithm

Computing a 0.05-cover on a coarse
Wren Peak using GreedyGuard
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A simple Greedy Algorithm

Computing a 0.05-cover on a coarse
Wren Peak using GreedyGuard
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A simple Greedy Algorithm

Computing a 0.05-cover on a coarse
Wren Peak using GreedyGuard
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Computing a 0.05-cover on a coarse
Wren Peak using GreedyGuard
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Computing a 0.05-cover on a coarse
Wren Peak using GreedyGuard
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Computing a 0.05-cover on a coarse
Wren Peak using GreedyGuard
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Computing a 0.05-cover on a coarse
Wren Peak using GreedyGuard
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A simple Greedy Algorithm

Computing a 0.05-cover on a coarse
Wren Peak using GreedyGuard

|G| =10



A simple Greedy Algorithm

Computing a 0.05-cover on a coarse
Wren Peak using GreedyGuard

|G| =10



A simple Greedy Algorithm

We need another 15 guards to view
all remaining vertices!

Computing a 0.05-cover on a coarse
Wren Peak using GreedyGuard

|G| =10
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Dominating Guards
g dominates h ≡ V(h) ⊆ V(g)
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h

Let H = {p1, .., pk, h} be an ε-cover.



(
1− 1

k

)`
=

(
1− 1

k

)ck/ε
=((

1− 1

k

)k)c/ε

≤ (1/e)c/ε = 1/(ec/ε) ≤ ε.

g strictly dominates h ≡ V(h) ⊂ V(g)

Dominating Guards

=⇒ G = {p1, .., pk, g} is an ε-cover.
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Let H = {p1, .., pk, h} be an ε-cover.

g
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g strictly dominates h ≡ V(h) ⊂ V(g)

Dominating Guards

=⇒ G = {p1, .., pk, g} is an ε-cover.

h

Let H = {p1, .., pk, h} be an ε-cover.

g

Observation 2. Let P be a set of potential guards. There is an optimal
(minimum size) ε-cover G of V(P) such that no guard in G is strictly dominated
by any guard in P.
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Dominating Guards
Wren Peak

finecoarse

≈ 45% ≈ 20%
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hg

g δ-dominates h ≡ JV(h) \ V(g)K / JV(h)K ≤ δ
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δ-Dominating Guards
g δ-dominates h ≡ JV(h) \ V(g)K / JV(h)K ≤ δ

g h

δ δ

g δ-dominates h

h δ-dominates g

We cannot throw away all δ-dominated guards!
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δ-Dominating Guards
g δ-dominates h ≡ JV(h) \ V(g)K / JV(h)K ≤ δ

G δ-dominates H ≡ JV(H) \ V(G)K / JV(H)K ≤ δ

extend to sets of guards G and H:

Find a minimum size set of guards D that δ-dominate P .
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δ-Dominating Guards
g δ-dominates h ≡ JV(h) \ V(g)K / JV(h)K ≤ δ

G δ-dominates H ≡ JV(H) \ V(G)K / JV(H)K ≤ δ

extend to sets of guards G and H:

Find a minimum size set of guards D that δ-dominate P .

Computing D is NP-hard
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Using δ-Domination

Algorithm DominatingGuard(T , ε, δ,P)
1. Compute the viewsheds for all guards in P.
2. Compute a minimal set of guards D that δ-dominates P.
3. Let δ̂ = JV(D)K / JV(P)K be the fraction of V(P) covered by D.

4. Let γ = (ε− δ)/(1− δ̂) and let T̂ = V(D).
5. return GreedyGuard(T̂ , γ,D)
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Using δ-Domination

Algorithm DominatingGuard(T , ε, δ,P)
1. Compute the viewsheds for all guards in P.
2. Compute a minimal set of guards D that δ-dominates P.
3. Let δ̂ = JV(D)K / JV(P)K be the fraction of V(P) covered by D.

4. Let γ = (ε− δ)/(1− δ̂) and let T̂ = V(D).
5. return AnyAlgorithmToComputeAnε-Cover(T̂ , γ,D)
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ε = 0.05
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# of guards in G was the same for all δ.ε = 0.05
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Future Work

Measure JV(g)K by area instead of #
vertices.

Quality guarantees on δ-domination.
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Future Work

Measure JV(g)K by area instead of #
vertices.

Quality guarantees on δ-domination.

Thank you!


