On the complexity of minimum-link path problems

Given a domain D, and two points $s, t \in D$ find a minimum-link path P between s and t,

s.t. the bends of P lie in $D|^a$, and the links of P lie in $D|^b$

a	b 1	2 (faces)	3 (anywhere)	
0 (vertices)				
1 (edges)				
2 (faces)				
3 (anywhere)				

Trimming the problems				
a b	1	2 (faces)	3 (anywhere)	
0 (vertices)				
1 (edges)				
2 (faces)				
3 (anywhere)				

remain min pacifip objection				
$a \qquad b$	1	2 (faces)	3 (anywhere)	
0 (vertices)	O(n)	$O^*(n^2)$	$O^*(n^2)$	
1 (edges)				
2 (faces)				
3 (anywhere)				

a b	1	2 (faces)	3 (anywhere)	
0 (vertices)	O(n)	$O^*(n^2)$	$O^*(n^2)$	
1 (edges)				
2 (faces)				
3 (anywhere)			O(1)	

reministration participations				
a b	1	2 (faces)	3 (anywhere)	
0 (vertices)	O(n)	$O^*(n^2)$	$O^*(n^2)$	
1 (edges)		$\begin{array}{c} O(n^9) \\ \text{[Aronov et al., 2006]} \end{array}$		
2 (faces)		$O(n)$ [Suri, 1986] $O^*(n^2)$ [Mitchell et al., 1992]		
3 (anywhere)			O(1)	

William mint path problems					
a b	1	2 (faces)	3 (anywhere)		
0 (vertices)	O(n)	$O^*(n^2)$	$O^*(n^2)$		
		$O(n^9)$ [Aronov et al., 2006]			
1 (edges)					
		O(n) [Suri, 1986]			
2 (faces)		$O^*(n^2)$ [Mitchell et al., 1992]			
			O(1)		
3 (anywhere)					

a b	1	2 (faces)	3 (any	where)
0 (vertices)	O(n)	$O^*(n^2)$		$O^*(n^2)$
		$O(n^9)$ [Aronov et al., 2006]		
1 (edges)		Open		Open
		O(n) [Suri, 1986]		
2 (faces)		$O^*(n^2)$ [Mitchell et al., 1992]		Open
		Open		
				O(1)
3 (anywhere)				Open

			•	
a	b	1	2 (faces) 3 (any	where)
0 (vertices)		O(n)	$O^*(n^2)$	$O^*(n^2)$
1 (edges)			$O(n^9)$ [Aronov et al., 2006]	
1 (cages)	Ш			Open
			Discrete and Computational Geometry	
2 (faces)		""	What is the complexity of the minimum-link path problem	n
		in	3-space?"	.)
	\neg			<u></u>

3 (anywhere)

Open

reminiment mine pacifi problems					
a	1	2 (faces)	3 (anywh	ere)	
0 (vertices)	O(n)	$O^*(n^2)$		$O^*(n^2)$	
		$O(n^9)$ [Aronov et al., 2006]	N	P-hard	
1 (edges)		NP-hard			
		O(n) [Suri, 1986]	N	P-hard	
2 (faces)		$O^*(n^2)$ [Mitchell et al., 1992]			
		NP-hard			
				O(1)	
3 (anywhere)			N	P-hard	

		I I	
a b	1	2 (faces)	3 (anywhere)
0 (vertices)	O(n)	$O^*(n^2)$	$O^*(n^2)$
1 ()		$O(n^9)$ [Aronov et al., 2006]	NP-hard no FPTAS
1 (edges)		NP-hard no FPTAS	
		O(n) [Suri, 1986]	NP-hard no FPTAS
2 (faces)		$O^*(n^2)$ [Mitchell et al., 1992]	
		NP-hard no FPTAS	
			O(1)
3 (anywhere)			NP-hard no FPTAS

reministration participations					
a	$0 \mid 1$	2 (faces)	3 (anywhere)		
0 (vertices)	O(n)	$O^*(n^2)$	$O^*(n^2)$		
1 (edges)		O(n ⁹) [Aronov et al., 2006] NP-hard no FPTAS PTAS	NP-hard no FPTAS PTAS		
2 (faces)		$\begin{array}{c} O(n) \\ [\mathrm{Suri, 1986}] \\ O^*(n^2) \\ [\mathrm{Mitchell \ et \ al., 1992}] \\ \hline \\ \mathrm{NP-hard} \\ \mathrm{no \ FPTAS} \\ \mathrm{PTAS} \\ \end{array}$	NP-hard no FPTAS PTAS		
3 (anywhere)			O(1) NP-hard no FPTAS		

PTAS

William min path problems					
a b	1	2 (faces)	3 (anywhere)		
0 (vertices)	O(n)	$O^*(n^2)$	$O^*(n^2)$		
1 (edges)		O(n ⁹) [Aronov et al., 2006] NP-hard no FPTAS PTAS	NP-hard no FPTAS PTAS		
2 (faces)		$\begin{array}{c} O(n) \\ [\mathrm{Suri, 1986}] \\ O^*(n^2) \\ [\mathrm{Mitchell \ et \ al., 1992}] \\ \hline NP-hard \\ \mathrm{no \ FPTAS} \\ \mathrm{PTAS} \\ \end{array}$	NP-hard no FPTAS PTAS 2-Aprx: $O(n^4)$		
3 (anywhere)			O(1) NP-hard no FPTAS		

PTAS

Lemma. [Kahan & Snoeyink, 1999]

There is a simple polygon with vertices of bit-complexity $\log n$ s.t. the boundary of the region reachable from s in k steps has vertices with bit-complexity $\Omega(k\log n)$.

Lemma.

A MinLinkPath_{ab} of length k between s and t in a simple polygon whose vertices, as well as s and t, have bit-complexity $\log n$, may contain vertices of bit-complexity $\Omega(k \log n)$.

Lemma.

A MinLinkPath_{ab} of length k between s and t in a simple polygon whose vertices, as well as s and t, have bit-complexity $\log n$, may contain vertices of bit-complexity $\Omega(k \log n)$.

Lemma.

The k-reachable space has vertices with bit complexity $O(k \log n)$.

Lemma.

The boundary of the k-reachable space can be represented by curves of order 2k+1 (and order 2 when k=1).

Lemma.

The boundary of the k-reachable space can be represented by curves of order 2k+1 (and order 2 when k=1).

Lemma.

The k-reachable space has vertices with bit complexity $O(9^k)$.

Willing the path problems			
a b	1	2 (faces)	3 (anywhere)
0 (vertices)	O(n)	$O^*(n^2)$	$O^*(n^2)$
1 (edges)		O(n ⁹) [Aronov et al., 2006] NP-hard no FPTAS PTAS	NP-hard no FPTAS PTAS
2 (faces)		$\begin{array}{c} O(n) \\ [\mathrm{Suri, 1986}] \\ O^*(n^2) \\ [\mathrm{Mitchell \ et \ al., 1992}] \\ \hline \mathrm{NP-hard} \\ \mathrm{no \ FPTAS} \\ \mathrm{PTAS} \\ \end{array}$	NP-hard no FPTAS PTAS 2-Aprx: $O(n^4)$
3 (anywhere)			O(1) NP-hard no FPTAS

2-Partition: n integers $a_1,...,a_n$ with $\sum a_i = 2W$. Is there a subset S that sums to W?

2-Partition: n integers $a_1,...,a_n$ with $\sum a_i = 2W$. Is there a subset S that sums to W?

2-Partition: n integers $a_1,...,a_n$ with $\sum a_i = 2W$. Is there a subset S that sums to W?

Min link path* with bends on lines, from s to t with 2n-1 links $\iff \exists$ subset S that sums to W

2-Partition: n integers $a_1,...,a_n$ with $\sum a_i = 2W$. Is there a subset S that sums to W?

2-Partition: n integers $a_1,...,a_n$ with $\sum a_i = 2W$. Is there a subset S that sums to W?

2-Partition: n integers $a_1,...,a_n$ with $\sum a_i = 2W$. Is there a subset S that sums to W?

2-Partition: n integers $a_1,...,a_n$ with $\sum a_i = 2W$. Is there a subset S that sums to W?

2-Partition: n integers $a_1,...,a_n$ with $\sum a_i = 2W$. Is there a subset S that sums to W?

2-Partition: n integers $a_1,...,a_n$ with $\sum a_i = 2W$. Is there a subset S that sums to W?

2-Partition: n integers $a_1,...,a_n$ with $\sum a_i = 2W$. Is there a subset S that sums to W? Min link path* with bends on lines, \iff \exists subset S that sums to W from s to t with 2n-1 links W $a_1 \in S$? a_1 $a_2 \in S$? $a_1 + a_2$ a_2 reverse $a_1 + a_2$

Theorem. MinLinkPath a_2 in a polygon with holes is NP-hard.

Future Work

• Is Minimum link path strongly NP-hard? or, can design a pseudo polynomial time algorithm?

Future Work

- Is Minimum link path strongly NP-hard?
 or, can design a pseudo polynomial time algorithm?
- Is there a polynomial upper bound on the bit-complexity in \mathbb{R}^3 ?
- lower bound on the bit-complexity in \mathbb{R}^3 ?

Future Work

- Is Minimum link path strongly NP-hard?
 or, can design a pseudo polynomial time algorithm?
- Is there a polynomial upper bound on the bit-complexity in \mathbb{R}^3 ?
- lower bound on the bit-complexity in \mathbb{R}^3 ?

