Shortest Paths in Portalgons

Maarten Löffler Rodrigo Silveira Tim Ophelders Frank Staals

Portalgon $\mathcal{P} = (\mathcal{F}, \mathcal{E})$

 \mathcal{F} : set of simple polygons

 \mathcal{E} : set of portals

portal (e^-, e^+) : pair of identified edges

Portalgon $\mathcal{P} = (\mathcal{F}, \mathcal{E})$

 \mathcal{F} : set of simple polygons

 \mathcal{E} : set of portals

portal (e^-, e^+) : pair of identified edges

Portalgon $\mathcal{P} = (\mathcal{F}, \mathcal{E})$

 \mathcal{F} : set of simple polygons

 \mathcal{E} : set of portals

portal (e^-, e^+) : pair of identified edges

Portalgon $\mathcal{P} = (\mathcal{F}, \mathcal{E})$

 $\mathcal{F}:$ set of simple polygons

 \mathcal{E} : set of portals

portal (e^-, e^+) : pair of identified edges

Generalization of a polygon, polyhedron, etc.

 $\mathcal{P} \qquad \mathcal{F} = \{F_1, F_2\} \\ \mathcal{E} = \{(e^-, e^+), (b^-, b^+)\} \\ \hline e^- \qquad e^+ \\ F_1 \qquad F_2 \\ e^- \qquad b^- \\ \hline e^- \\ \hline e^- \qquad b^- \\ \hline e^- \qquad b^- \\ \hline e^- \\ \hline e$

Portalgon $\mathcal{P} = (\mathcal{F}, \mathcal{E})$

- $\mathcal{F}:$ set of simple polygons
- \mathcal{E} : set of portals
- **portal** (e^-, e^+) : pair of identified edges
- Generalization of a polygon, polyhedron, etc.
- A portalgon is a representation of a surface $\boldsymbol{\Sigma}$

Portalgon $\mathcal{P} = (\mathcal{F}, \mathcal{E})$

- $\mathcal{F}:$ set of simple polygons
- \mathcal{E} : set of portals
- **portal** (e^-, e^+) : pair of identified edges
- Generalization of a polygon, polyhedron, etc.
- A portalgon is a representation of a surface $\boldsymbol{\Sigma}$

Portalgon $\mathcal{P} = (\mathcal{F}, \mathcal{E})$

- $\mathcal{F}:$ set of simple polygons
- \mathcal{E} : set of portals
- **portal** (e^-, e^+) : pair of identified edges
- Generalization of a polygon, polyhedron, etc.
- A portalgon is a **representation** of a surface Σ

e ⁻
e ⁺

 \mathcal{P}

Q: Can we efficiently compute a **shortest path** $\pi(s, t)$ in \mathcal{P} ?

Q: Can we efficiently compute a **shortest path** $\pi(s, t)$ in \mathcal{P} ?

computing $\pi(s, t)$ in/on a

<i>O</i> (<i>n</i>)	[GHLST, 1987]
$O(n+k\log k)$	[Wang, 2021]
O(n log n)	[Schreiber, 2007]
<i>O</i> (<i>n</i> ²)	[Chen & Han, 1996]
	O(n) $O(n + k \log k)$ $O(n \log n)$ $O(n^2)$

n = #vertices

k = #holes

Q: Can we efficiently compute a **shortest path** $\pi(s, t)$ in \mathcal{P} ?

Obs. Complexity $\pi(s, t)$ unbounded in terms of *n*.

Q: Can we efficiently compute a **shortest path** $\pi(s, t)$ in \mathcal{P} ?

Obs. Complexity $\pi(s, t)$ unbounded in terms of *n*.

Define the **happiness** *h* of \mathcal{P} as

 $h = \max_{s,t \in \mathcal{P}} \max_{F \in \mathcal{F}} \max_{\pi(s,t)}$ #components in $\pi \cap F$

Q: Can we efficiently compute a **shortest path** $\pi(s, t)$ in \mathcal{P} ?

Obs. Complexity $\pi(s, t)$ unbounded in terms of *n*.

Define the **happiness** h of \mathcal{P} as

 $h = \max_{s,t \in \mathcal{P}} \max_{F \in \mathcal{F}} \max_{\pi(s,t)}$ #components in $\pi \cap F$

Thm. Complexity of any shortest path $\pi(s, t)$ in a *h*-happy \mathcal{P} is $\Theta(n + hm)$

m = #portal edges $(m \le n)$

 \mathcal{P}

Q: Can we efficiently compute a **shortest path** $\pi(s, t)$ in \mathcal{P} ?

Obs. Complexity $\pi(s, t)$ unbounded in terms of *n*.

Define the **happiness** h of \mathcal{P} as

 $h = \max_{s,t \in \mathcal{P}} \max_{F \in \mathcal{F}} \max_{\pi(s,t)}$ #components in $\pi \cap F$

Thm. Complexity of any shortest path $\pi(s, t)$ in a *h*-happy \mathcal{P} is $\Theta(n + hm)$

m = #portal edges

 $(m \leq n)$

Thm. Complexity of the **shortest path map** SPM(*s*) in a *h*-happy \mathcal{P} is $O(n^2h)$,

P S t

Q: Can we efficiently compute a **shortest path** $\pi(s, t)$ in \mathcal{P} ?

Obs. Complexity $\pi(s, t)$ unbounded in terms of *n*.

Define the **happiness** h of \mathcal{P} as

 $h = \max_{s,t \in \mathcal{P}} \max_{F \in \mathcal{F}} \max_{\pi(s,t)}$ #components in $\pi \cap F$

Thm. Complexity of any shortest path $\pi(s, t)$ in a *h*-happy \mathcal{P} is $\Theta(n + hm)$

m = #portal edges

 $(m \le n)$

Thm. Complexity of the **shortest path map** SPM(*s*) in a *h*-happy \mathcal{P} is $O(n^2h)$, and can be computed in $O(\lambda_4(n^2h)\log^2(nh))$ time.

P

Main Question: Given a portalgon $\mathcal P$ representing Σ

a) is there a O(1)-happy equivalent portalgon \mathcal{P}' representing $\Sigma?$

Main Question: Given a portalgon ${\mathcal P}$ representing Σ

a) is there a O(1)-happy equivalent portalgon \mathcal{P}' representing $\Sigma?$

Main Question: Given a portalgon ${\mathcal P}$ representing Σ

a) is there a O(1)-happy equivalent portalgon \mathcal{P}' representing $\Sigma?$

Main Question: Given a portalgon ${\mathcal P}$ representing Σ

a) is there a O(1)-happy equivalent portalgon \mathcal{P}' representing $\Sigma?$

a) is there a O(1)-happy equivalent portalgon \mathcal{P}' representing Σ ?

a) is there a O(1)-happy equivalent portalgon \mathcal{P}' representing $\Sigma?$

Main Question: Given a portalgon ${\mathcal P}$ representing Σ

a) is there a O(1)-happy equivalent portalgon \mathcal{P}' representing $\Sigma?$

a) is there a O(1)-happy equivalent portalgon \mathcal{P}' representing $\Sigma?$

b) can we compute \mathcal{P}' efficiently?

 \mathcal{P}

S

Σ

Main Question: Given a portalgon ${\mathcal P}$ representing Σ

a) is there a $\mathit{O}(1)\text{-happy}$ equivalent portalgon \mathcal{P}' representing $\Sigma?$

b) can we compute \mathcal{P}' efficiently?

Thm. There is an O(1)-happy \mathcal{P}' equivalent to \mathcal{P} .

Σ

Main Question: Given a portalgon ${\mathcal P}$ representing Σ

a) is there a $\mathit{O}(1)\text{-happy}$ equivalent portalgon \mathcal{P}' representing $\Sigma?$

b) can we compute \mathcal{P}' efficiently?

Thm. The **intrinsic Delaunay Triangulation** \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Σ

Main Question: Given a portalgon ${\mathcal P}$ representing Σ

a) is there a $\mathit{O}(1)\text{-happy}$ equivalent portalgon \mathcal{P}' representing $\Sigma?$

b) can we compute \mathcal{P}' efficiently?

OPEN

Thm. The **intrinsic Delaunay Triangulation** \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Σ

Main Question: Given a portalgon ${\mathcal P}$ representing Σ

a) is there a O(1)-happy equivalent portalgon \mathcal{P}' representing Σ ?

b) can we compute \mathcal{P}' efficiently?

OPEN

Thm. The **intrinsic Delaunay Triangulation** \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Thm. If fragment graph of \mathcal{P} has ≤ 1 simple cycle, we can compute an equivalent \mathcal{P}' in $O(n + \log h)$ time.

Main Question: Given a portalgon ${\mathcal P}$ representing Σ

a) is there a $\mathit{O}(1)\text{-happy}$ equivalent portalgon \mathcal{P}' representing $\Sigma?$

b) can we compute \mathcal{P}' efficiently?

OPEN

Thm. The **intrinsic Delaunay Triangulation** \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Thm. If fragment graph of \mathcal{P} has ≤ 1 simple cycle, we can compute an equivalent \mathcal{P}' in $O(n + \log h)$ time.

Obs. Complexity $\pi(s, t)$ unbounded in terms of *n*.

Thm. Complexity of $\pi(s, t)$ in a *h*-happy \mathcal{P} is $\Theta(n + hm)$

Thm. Complexity of SPM(*s*) in a *h*-happy \mathcal{P} is $O(n^2h)$, and can be computed in $O(\lambda_4(n^2h)\log^2(nh))$ time.

Thm. The **intrinsic Delaunay Triangulation** \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Thm. If fragment graph of \mathcal{P} has ≤ 1 simple cycle, we can compute an equivalent \mathcal{P}' in $O(n + \log h)$ time.

Obs. Complexity $\pi(s, t)$ unbounded in terms of *n*.

Thm. Complexity of $\pi(s, t)$ in a *h*-happy \mathcal{P} is $\Theta(n + hm)$

Thm. Complexity of SPM(*s*) in a *h*-happy \mathcal{P} is $O(n^2h)$, and can be computed in $O(\lambda_4(n^2h)\log^2(nh))$ time.

Thm. The **intrinsic Delaunay Triangulation** \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Thm. If fragment graph of \mathcal{P} has ≤ 1 simple cycle, we can compute an equivalent \mathcal{P}' in $O(n + \log h)$ time.

PHN

Obs. Complexity $\pi(s, t)$ unbounded in terms of *n*.

Thm. Complexity of $\pi(s, t)$ in a *h*-happy \mathcal{P} is $\Theta(n + hm)$

Thm. Complexity of SPM(*s*) in a *h*-happy \mathcal{P} is $O(n^2h)$, and can be computed in $O(\lambda_4(n^2h)\log^2(nh))$ time.

Thm. The **intrinsic Delaunay Triangulation** \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Thm. If fragment graph of \mathcal{P} has ≤ 1 simple cycle, we can compute an equivalent \mathcal{P}' in $O(n + \log h)$ time.

PHN

Obs. Complexity $\pi(s, t)$ unbounded in terms of *n*.

Thm. Complexity of $\pi(s, t)$ in a *h*-happy \mathcal{P} is $\Theta(n + hm)$

Thm. Complexity of SPM(*s*) in a *h*-happy \mathcal{P} is $O(n^2h)$, and can be computed in $O(\lambda_4(n^2h)\log^2(nh))$ time.

Thm. The **intrinsic Delaunay Triangulation** \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Thm. If fragment graph of \mathcal{P} has ≤ 1 simple cycle, we can compute an equivalent \mathcal{P}' in $O(n + \log h)$ time.

PHN

Obs. Complexity $\pi(s, t)$ unbounded in terms of *n*.

Thm. Complexity of $\pi(s, t)$ in a *h*-happy \mathcal{P} is $\Theta(n + hm)$

Thm. Complexity of SPM(*s*) in a *h*-happy \mathcal{P} is $O(n^2h)$, and can be computed in $O(\lambda_4(n^2h)\log^2(nh))$ time.

Thm. The **intrinsic Delaunay Triangulation** \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Thm. If fragment graph of \mathcal{P} has ≤ 1 simple cycle, we can compute an equivalent \mathcal{P}' in $O(n + \log h)$ time.

PHN

Obs. Complexity $\pi(s, t)$ unbounded in terms of *n*.

Thm. Complexity of $\pi(s, t)$ in a *h*-happy \mathcal{P} is $\Theta(n + hm)$

Thm. Complexity of SPM(*s*) in a *h*-happy \mathcal{P} is $O(n^2h)$, and can be computed in $O(\lambda_4(n^2h)\log^2(nh))$ time.

Thm. The **intrinsic Delaunay Triangulation** \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Thm. If fragment graph of \mathcal{P} has ≤ 1 simple cycle, we can compute an equivalent \mathcal{P}' in $O(n + \log h)$ time.

PHN

Obs. Complexity $\pi(s, t)$ unbounded in terms of *n*.

Thm. Complexity of $\pi(s, t)$ in a *h*-happy \mathcal{P} is $\Theta(n + hm)$

Thm. Complexity of SPM(*s*) in a *h*-happy \mathcal{P} is $O(n^2h)$, and can be computed in $O(\lambda_4(n^2h)\log^2(nh))$ time.

Thm. The **intrinsic Delaunay Triangulation** \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Thm. If fragment graph of \mathcal{P} has ≤ 1 simple cycle, we can compute an equivalent \mathcal{P}' in $O(n + \log h)$ time.

PHN

Obs. Complexity $\pi(s, t)$ unbounded in terms of *n*.

Thm. Complexity of $\pi(s, t)$ in a *h*-happy \mathcal{P} is $\Theta(n + hm)$

Thm. Complexity of SPM(*s*) in a *h*-happy \mathcal{P} is $O(n^2h)$, and can be computed in $O(\lambda_4(n^2h)\log^2(nh))$ time.

Thm. The **intrinsic Delaunay Triangulation** \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Thm. If fragment graph of \mathcal{P} has ≤ 1 simple cycle, we can compute an equivalent \mathcal{P}' in $O(n + \log h)$ time.

PHN

Obs. Complexity $\pi(s, t)$ unbounded in terms of *n*.

Thm. Complexity of $\pi(s, t)$ in a *h*-happy \mathcal{P} is $\Theta(n + hm)$

Thm. Complexity of SPM(*s*) in a *h*-happy \mathcal{P} is $O(n^2h)$, and can be computed in $O(\lambda_4(n^2h)\log^2(nh))$ time.

Thm. The **intrinsic Delaunay Triangulation** \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Thm. If fragment graph of \mathcal{P} has ≤ 1 simple cycle, we can compute an equivalent \mathcal{P}' in $O(n + \log h)$ time.

Given \mathcal{P} , can we compute an O(1)-happy \mathcal{P}' equivalent to \mathcal{P} efficiently?

Main Idea: use continuous dijkstra

Obs. Complexity $\pi(s, t)$ unbounded in terms of *n*.

Thm. Complexity of $\pi(s, t)$ in a *h*-happy \mathcal{P} is $\Theta(n + hm)$

Thm. Complexity of SPM(*s*) in a *h*-happy \mathcal{P} is $O(n^2h)$, and can be computed in $O(\lambda_4(n^2h)\log^2(nh))$ time.

Thm. The **intrinsic Delaunay Triangulation** \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Thm. If fragment graph of \mathcal{P} has ≤ 1 simple cycle, we can compute an equivalent \mathcal{P}' in $O(n + \log h)$ time.

PHN

Consider a parallelogram $F \in F$ with a horizontal portal (e^- , e^+)

Consider a parallelogram $F \in F$ with a horizontal portal (e^- , e^+)

Consider a parallelogram $F \in F$ with a horizontal portal (e^- , e^+)

Consider a parallelogram $F \in F$ with a horizontal portal (e^- , e^+)

Consider a parallelogram $F \in F$ with a horizontal portal (e^- , e^+)

Consider a parallelogram $F \in F$ with a horizontal portal (e^- , e^+)

Consider a parallelogram $F \in F$ with a horizontal portal (e^- , e^+)

Consider a parallelogram $F \in F$ with a horizontal portal (e^- , e^+)

Lem. If the **shift** $\Delta = 0$ then *F* is 2-happy.

Lem. A parallelogram *F* can be made 2-happy in *O*(1) time.

Consider a $F \in F$ with a horizontal portal (e^{-} , e^{+})

Consider a $F \in F$ with a horizontal portal (e^{-} , e^{+})

Consider a $F \in F$ with a horizontal portal (e^{-}, e^{+})

Lem. If the **shift** $\Delta = 0$ then *F* is 2-happy.

Lem. We can compute \mathcal{P}' equivalent to F in O(n) time.

Consider a $F \in F$ with a portal (e^- , e^+)

Consider a $F \in F$ with a portal (e^- , e^+)

```
Lem. We can compute \mathcal{P}' equivalent to F in O(n + \log h) time.
```


Thm. The intrinsic Delaunay Triangulation \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Can we compute SPM(s) in O(nmh) time?

OPEN

OPEN

Thm. The intrinsic Delaunay Triangulation \mathcal{P}' of \mathcal{P} is O(1) happy (and equivalent to \mathcal{P}).

Can we compute SPM(*s*) in *O*(*nmh*) time?

OPEN

happy (and equivalent to \mathcal{P}).

Thm. The intrinsic Delaunay Triangulation \mathcal{P}' of \mathcal{P} is O(1)

Given \mathcal{P} , can we compute an O(1)-happy \mathcal{P}' equivalent to \mathcal{P} efficiently?

Thank You!