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Q: Can we efficiently compute a shortest path (s, t) in P?

computing 7(s, t) infon a

simple polygon O(n) [GHLST, 1987]
polygonal domain On+ klogk) [Wang, 2021]
convex polyhedron O(nlog n) [Schreiber, 2007]
polyhedron o(n?) [Chen & Han, 1996]

n = #vertices
k = #holes
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Q: Can we efficiently compute a shortest path (s, t) in P?

Obs. Complexity (s, t) unbounded in terms of n.

Define the happiness h of P as

h = max maxmax #components in ™M F
steP FEF m(s,t)

Thm. Complexity of any shortest path (s, t) in a
h-happy P is ©(n+ hm)

m = #portal edges (m < n)

Thm. Complexity of the shortest path map SPM(s) in a
h-happy P is O(n*h), and can be computed in

O(\a(n?h) log?(nh)) time.
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representing %7

Main Question: Given a portalgon P representing X
a) is there a O(1)-happy equivalent portalgon P’

b) can we compute P’ efficiently? OPEN

Fragment graph: A

Thm. The intrinsic Delaunay Triangulation P’ of P is
O(1) happy (and equivalent to P).

Thm. If fragment graph of P has < 1 simple cycle, we \ r
can compute an equivalent P’ in O(n+ log h) time. 4
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Thm. If fragment graph of P has < 1 simple cycle, we
can compute an equivalent P’ in O(n+ log h) time.
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Lem. If the shift A = 0 then F is 2-happy. A

Lem. A parallelogram F can be made 2-happy in O(1) time.
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e
Lem. If the shift A = 0 then F is 2-happy.

Lem. We can compute P’ equivalent to F in O(n+ log h) —
time.
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