
Shortest Paths in Portalgons

Maarten Löffler
Rodrigo Silveira
Tim Ophelders
Frank Staals

F1

F2

F3 F4



Portalgons?

Portalgon P = (F ,E )

F : set of simple polygons

E : set of portals

portal (e−, e+) : pair of identified edges

P

e− e+

F1 F2

E = {(e−, e+), (b−, b+)}
F = {F1, F2}

e− b−



Portalgons?

Portalgon P = (F ,E )

F : set of simple polygons

E : set of portals

portal (e−, e+) : pair of identified edges

P

e− e+

F1 F2

E = {(e−, e+), (b−, b+)}
F = {F1, F2}

e− b−



Portalgons?

Portalgon P = (F ,E )

F : set of simple polygons

E : set of portals

portal (e−, e+) : pair of identified edges

P

e− e+

F1 F2

E = {(e−, e+), (b−, b+)}
F = {F1, F2}

e− b−



Portalgons?

Portalgon P = (F ,E )

F : set of simple polygons

E : set of portals

portal (e−, e+) : pair of identified edges

P

e− e+

F1 F2

E = {(e−, e+), (b−, b+)}
F = {F1, F2}

e− b−
Generalization of a polygon, polyhedron, etc.



Portalgons?

Portalgon P = (F ,E )

F : set of simple polygons

E : set of portals

portal (e−, e+) : pair of identified edges

P

e− e+

F1 F2

E = {(e−, e+), (b−, b+)}
F = {F1, F2}

e− b−

Σ

A portalgon is a representation of a surface Σ

Generalization of a polygon, polyhedron, etc.



Portalgons?

Portalgon P = (F ,E )

F : set of simple polygons

E : set of portals

portal (e−, e+) : pair of identified edges

P

Σ

A portalgon is a representation of a surface Σ

Generalization of a polygon, polyhedron, etc.



Portalgons?

Portalgon P = (F ,E )

F : set of simple polygons

E : set of portals

portal (e−, e+) : pair of identified edges

P

Σ

A portalgon is a representation of a surface Σ

Generalization of a polygon, polyhedron, etc.

e−

e+



Portalgons?

P

Σ

Q: Can we efficiently compute a shortest path π(s, t) in P?

s

t



Portalgons?

P

Σ

Q: Can we efficiently compute a shortest path π(s, t) in P?

s

t

computing π(s, t) in/on a

simple polygon

polygonal domain

polyhedron

convex polyhedron

O(n)

O(n + k log k)

O(n log n)

O(n2)

n = #verticesn = #vertices

k = #holes

[GHLST, 1987]

[Wang, 2021]

[Chen & Han, 1996]

[Schreiber, 2007]



Portalgons?

P

Σ

Q: Can we efficiently compute a shortest path π(s, t) in P? s

t

Obs. Complexity π(s, t) unbounded in terms of n.



Portalgons?

P

Σ

Q: Can we efficiently compute a shortest path π(s, t) in P? s

t

Obs. Complexity π(s, t) unbounded in terms of n.

Define the happiness h of P as

h = max
s,t∈P

max
F∈F

max
π(s,t)

#components in π ∩ F



Portalgons?

P

Σ

Q: Can we efficiently compute a shortest path π(s, t) in P? s

t

Obs. Complexity π(s, t) unbounded in terms of n.

Define the happiness h of P as

h = max
s,t∈P

max
F∈F

max
π(s,t)

#components in π ∩ F

Thm. Complexity of any shortest path π(s, t) in a
h-happy P is Θ(n + hm)

m = #portal edges (m ≤ n)



Portalgons?

P

Σ

Q: Can we efficiently compute a shortest path π(s, t) in P? s

t

Obs. Complexity π(s, t) unbounded in terms of n.

Define the happiness h of P as

h = max
s,t∈P

max
F∈F

max
π(s,t)

#components in π ∩ F

Thm. Complexity of any shortest path π(s, t) in a
h-happy P is Θ(n + hm)

m = #portal edges (m ≤ n)

Thm. Complexity of the shortest path map SPM(s) in a
h-happy P is O(n2h),



Portalgons?

P

Σ

Q: Can we efficiently compute a shortest path π(s, t) in P? s

t

Obs. Complexity π(s, t) unbounded in terms of n.

Define the happiness h of P as

h = max
s,t∈P

max
F∈F

max
π(s,t)

#components in π ∩ F

Thm. Complexity of any shortest path π(s, t) in a
h-happy P is Θ(n + hm)

m = #portal edges (m ≤ n)

Thm. Complexity of the shortest path map SPM(s) in a
h-happy P is O(n2h), and can be computed in
O(λ4(n2h) log2(nh)) time.



Portalgons?

P

Σ

s

tMain Question: Given a portalgon P representing Σ

a) is there a O(1)-happy equivalent portalgon P ′

representing Σ?

b) can we compute P ′ efficiently?

?
s

t



Portalgons?

P

Σ

s

tMain Question: Given a portalgon P representing Σ

a) is there a O(1)-happy equivalent portalgon P ′

representing Σ?

b) can we compute P ′ efficiently?

s

t

?
s

t



Portalgons?

P

Σ

s

tMain Question: Given a portalgon P representing Σ

a) is there a O(1)-happy equivalent portalgon P ′

representing Σ?

b) can we compute P ′ efficiently?

s

t

s

t

?
s

t



Portalgons?

P

Σ

s

tMain Question: Given a portalgon P representing Σ

a) is there a O(1)-happy equivalent portalgon P ′

representing Σ?

b) can we compute P ′ efficiently?

s

t

s

t

s

t

?
s

t



Portalgons?

P

Σ

s

tMain Question: Given a portalgon P representing Σ

a) is there a O(1)-happy equivalent portalgon P ′

representing Σ?

b) can we compute P ′ efficiently?

s

t

s

t

s

t

s

t

?
s

t



Portalgons?

P

Σ

Main Question: Given a portalgon P representing Σ

a) is there a O(1)-happy equivalent portalgon P ′

representing Σ?

b) can we compute P ′ efficiently?

s

t

?
s

t



Portalgons?

P

Σ

Main Question: Given a portalgon P representing Σ

a) is there a O(1)-happy equivalent portalgon P ′

representing Σ?

b) can we compute P ′ efficiently?

s

t

?
s

t



Portalgons?

P

Σ

Main Question: Given a portalgon P representing Σ

a) is there a O(1)-happy equivalent portalgon P ′

representing Σ?

b) can we compute P ′ efficiently?

s

t

?
s

t



Portalgons?

P

Σ

Main Question: Given a portalgon P representing Σ

a) is there a O(1)-happy equivalent portalgon P ′

representing Σ?

b) can we compute P ′ efficiently?

s

t



Portalgons?

P

Σ

Main Question: Given a portalgon P representing Σ

a) is there a O(1)-happy equivalent portalgon P ′

representing Σ?

b) can we compute P ′ efficiently?

s

t



Portalgons?

P

Σ

Main Question: Given a portalgon P representing Σ

a) is there a O(1)-happy equivalent portalgon P ′

representing Σ?

b) can we compute P ′ efficiently?

s

t

Thm. There is an O(1)-happy P ′ equivalent to P .



Portalgons?

P

Σ

Main Question: Given a portalgon P representing Σ

a) is there a O(1)-happy equivalent portalgon P ′

representing Σ?

b) can we compute P ′ efficiently?

s

t

Thm. The intrinsic Delaunay Triangulation P ′ of P is
O(1) happy (and equivalent to P ).



Portalgons?

P

Σ

Main Question: Given a portalgon P representing Σ

a) is there a O(1)-happy equivalent portalgon P ′

representing Σ?

b) can we compute P ′ efficiently?

s

t

Thm. The intrinsic Delaunay Triangulation P ′ of P is
O(1) happy (and equivalent to P ).

OPEN



Portalgons?

P

Σ

Main Question: Given a portalgon P representing Σ

a) is there a O(1)-happy equivalent portalgon P ′

representing Σ?

b) can we compute P ′ efficiently?

s

t

Thm. The intrinsic Delaunay Triangulation P ′ of P is
O(1) happy (and equivalent to P ).

OPEN

Thm. If fragment graph of P has ≤ 1 simple cycle, we
can compute an equivalent P ′ in O(n + log h) time.



Portalgons?

P

Main Question: Given a portalgon P representing Σ

a) is there a O(1)-happy equivalent portalgon P ′

representing Σ?

b) can we compute P ′ efficiently?

Thm. The intrinsic Delaunay Triangulation P ′ of P is
O(1) happy (and equivalent to P ).

OPEN

Thm. If fragment graph of P has ≤ 1 simple cycle, we
can compute an equivalent P ′ in O(n + log h) time.

F1 F2

F3 F4

F1

F2

F3

F4

Fragment graph:



Results

Given P , can we compute an O(1)-happy P ′

equivalent to P efficiently?

Thm. The intrinsic Delaunay Triangulation P ′ of P is
O(1) happy (and equivalent to P ).

OPEN

Thm. If fragment graph of P has ≤ 1 simple cycle, we
can compute an equivalent P ′ in O(n + log h) time.

Obs. Complexity π(s, t) unbounded in terms of n.

Thm. Complexity of π(s, t) in a h-happy P is Θ(n + hm)

Thm. Complexity of SPM(s) in a h-happy P is O(n2h), and
can be computed in O(λ4(n2h) log2(nh)) time.



Results

Given P , can we compute an O(1)-happy P ′

equivalent to P efficiently?

Thm. The intrinsic Delaunay Triangulation P ′ of P is
O(1) happy (and equivalent to P ).

OPEN

Thm. If fragment graph of P has ≤ 1 simple cycle, we
can compute an equivalent P ′ in O(n + log h) time.

Obs. Complexity π(s, t) unbounded in terms of n.

Thm. Complexity of π(s, t) in a h-happy P is Θ(n + hm)

Thm. Complexity of SPM(s) in a h-happy P is O(n2h), and
can be computed in O(λ4(n2h) log2(nh)) time.

s

Main Idea: use continuous dijkstra



Results

Given P , can we compute an O(1)-happy P ′

equivalent to P efficiently?

Thm. The intrinsic Delaunay Triangulation P ′ of P is
O(1) happy (and equivalent to P ).

OPEN

Thm. If fragment graph of P has ≤ 1 simple cycle, we
can compute an equivalent P ′ in O(n + log h) time.

Obs. Complexity π(s, t) unbounded in terms of n.

Thm. Complexity of π(s, t) in a h-happy P is Θ(n + hm)

Thm. Complexity of SPM(s) in a h-happy P is O(n2h), and
can be computed in O(λ4(n2h) log2(nh)) time.

s

Main Idea: use continuous dijkstra



Results

Given P , can we compute an O(1)-happy P ′

equivalent to P efficiently?

Thm. The intrinsic Delaunay Triangulation P ′ of P is
O(1) happy (and equivalent to P ).

OPEN

Thm. If fragment graph of P has ≤ 1 simple cycle, we
can compute an equivalent P ′ in O(n + log h) time.

Obs. Complexity π(s, t) unbounded in terms of n.

Thm. Complexity of π(s, t) in a h-happy P is Θ(n + hm)

Thm. Complexity of SPM(s) in a h-happy P is O(n2h), and
can be computed in O(λ4(n2h) log2(nh)) time.

s

Main Idea: use continuous dijkstra



Results

Given P , can we compute an O(1)-happy P ′

equivalent to P efficiently?

Thm. The intrinsic Delaunay Triangulation P ′ of P is
O(1) happy (and equivalent to P ).

OPEN

Thm. If fragment graph of P has ≤ 1 simple cycle, we
can compute an equivalent P ′ in O(n + log h) time.

Obs. Complexity π(s, t) unbounded in terms of n.

Thm. Complexity of π(s, t) in a h-happy P is Θ(n + hm)

Thm. Complexity of SPM(s) in a h-happy P is O(n2h), and
can be computed in O(λ4(n2h) log2(nh)) time.

s

Main Idea: use continuous dijkstra



Results

Given P , can we compute an O(1)-happy P ′

equivalent to P efficiently?

Thm. The intrinsic Delaunay Triangulation P ′ of P is
O(1) happy (and equivalent to P ).

OPEN

Thm. If fragment graph of P has ≤ 1 simple cycle, we
can compute an equivalent P ′ in O(n + log h) time.

Obs. Complexity π(s, t) unbounded in terms of n.

Thm. Complexity of π(s, t) in a h-happy P is Θ(n + hm)

Thm. Complexity of SPM(s) in a h-happy P is O(n2h), and
can be computed in O(λ4(n2h) log2(nh)) time.

s

Main Idea: use continuous dijkstra



Results

Given P , can we compute an O(1)-happy P ′

equivalent to P efficiently?

Thm. The intrinsic Delaunay Triangulation P ′ of P is
O(1) happy (and equivalent to P ).

OPEN

Thm. If fragment graph of P has ≤ 1 simple cycle, we
can compute an equivalent P ′ in O(n + log h) time.

Obs. Complexity π(s, t) unbounded in terms of n.

Thm. Complexity of π(s, t) in a h-happy P is Θ(n + hm)

Thm. Complexity of SPM(s) in a h-happy P is O(n2h), and
can be computed in O(λ4(n2h) log2(nh)) time.

s

Main Idea: use continuous dijkstra



Results

Given P , can we compute an O(1)-happy P ′

equivalent to P efficiently?

Thm. The intrinsic Delaunay Triangulation P ′ of P is
O(1) happy (and equivalent to P ).

OPEN

Thm. If fragment graph of P has ≤ 1 simple cycle, we
can compute an equivalent P ′ in O(n + log h) time.

Obs. Complexity π(s, t) unbounded in terms of n.

Thm. Complexity of π(s, t) in a h-happy P is Θ(n + hm)

Thm. Complexity of SPM(s) in a h-happy P is O(n2h), and
can be computed in O(λ4(n2h) log2(nh)) time.

s

Main Idea: use continuous dijkstra



Results

Given P , can we compute an O(1)-happy P ′

equivalent to P efficiently?

Thm. The intrinsic Delaunay Triangulation P ′ of P is
O(1) happy (and equivalent to P ).

OPEN

Thm. If fragment graph of P has ≤ 1 simple cycle, we
can compute an equivalent P ′ in O(n + log h) time.

Obs. Complexity π(s, t) unbounded in terms of n.

Thm. Complexity of π(s, t) in a h-happy P is Θ(n + hm)

Thm. Complexity of SPM(s) in a h-happy P is O(n2h), and
can be computed in O(λ4(n2h) log2(nh)) time.

s

Main Idea: use continuous dijkstra



Results

Given P , can we compute an O(1)-happy P ′

equivalent to P efficiently?

Thm. The intrinsic Delaunay Triangulation P ′ of P is
O(1) happy (and equivalent to P ).

OPEN

Thm. If fragment graph of P has ≤ 1 simple cycle, we
can compute an equivalent P ′ in O(n + log h) time.

Obs. Complexity π(s, t) unbounded in terms of n.

Thm. Complexity of π(s, t) in a h-happy P is Θ(n + hm)

Thm. Complexity of SPM(s) in a h-happy P is O(n2h), and
can be computed in O(λ4(n2h) log2(nh)) time.

≡



Making portalgons happy
Consider a parallelogram F ∈ F with a horizontal portal (e−, e+)

e−

e+



Making portalgons happy
Consider a parallelogram F ∈ F with a horizontal portal (e−, e+)

e−

e+

∆



Making portalgons happy
Consider a parallelogram F ∈ F with a horizontal portal (e−, e+)

e−

e+

∆Lem. If the shift ∆ = 0 then F is 2-happy.



Making portalgons happy
Consider a parallelogram F ∈ F with a horizontal portal (e−, e+)

e−

e+

∆Lem. If the shift ∆ = 0 then F is 2-happy.

s
t



Making portalgons happy
Consider a parallelogram F ∈ F with a horizontal portal (e−, e+)

e−

e+

∆Lem. If the shift ∆ = 0 then F is 2-happy.

ρ



Making portalgons happy

≡ ≡

Consider a parallelogram F ∈ F with a horizontal portal (e−, e+)

e−

e+

∆Lem. If the shift ∆ = 0 then F is 2-happy.

ρ



Making portalgons happy

≡ ≡

Consider a parallelogram F ∈ F with a horizontal portal (e−, e+)

e−

e+

∆Lem. If the shift ∆ = 0 then F is 2-happy.

p
ρ



Making portalgons happy

≡ ≡

Consider a parallelogram F ∈ F with a horizontal portal (e−, e+)

e−

e+

∆Lem. If the shift ∆ = 0 then F is 2-happy.

p
ρ

Lem. A parallelogram F can be made 2-happy in O(1) time.



Making portalgons happy

Lem. If the shift ∆ = 0 then F is 2-happy.

Consider a F ∈ F with a horizontal portal (e−, e+)

e−

e+



Making portalgons happy

Lem. If the shift ∆ = 0 then F is 2-happy.

Consider a F ∈ F with a horizontal portal (e−, e+)

m



Making portalgons happy

Lem. If the shift ∆ = 0 then F is 2-happy.

Consider a F ∈ F with a horizontal portal (e−, e+)

m

Lem. We can compute P ’ equivalent to F in O(n) time.



Making portalgons happy

Lem. If the shift ∆ = 0 then F is 2-happy.

Consider a F ∈ F with a portal (e−, e+)

≡

∆



Making portalgons happy

Lem. If the shift ∆ = 0 then F is 2-happy.

Consider a F ∈ F with a portal (e−, e+)

≡

∆

p

Lem. We can compute P ’ equivalent to F in O(n + log h)
time.



Concluding Remarks

Thm. Complexity of SPM(s) in a h-happy P is O(n2h), and
can be computed in O(λ4(n2h) log2(nh)) time. F1 F2

F3 F4



Concluding Remarks

Thm. The intrinsic Delaunay Triangulation P ′ of P is O(1)
happy (and equivalent to P ).

Thm. Complexity of SPM(s) in a h-happy P is O(n2h), and
can be computed in O(λ4(n2h) log2(nh)) time. F1 F2

F3 F4



Concluding Remarks

Given P , can we compute an O(1)-happy P ′

equivalent to P efficiently?

Thm. The intrinsic Delaunay Triangulation P ′ of P is O(1)
happy (and equivalent to P ).

OPENGiven P , can we compute an O(1)-happy P ′

equivalent to P efficiently? OPEN

Thm. Complexity of SPM(s) in a h-happy P is O(n2h), and
can be computed in O(λ4(n2h) log2(nh)) time.

OPENCan we compute SPM(s) in O(nmh) time? OPEN

F1 F2

F3 F4



Concluding Remarks

Given P , can we compute an O(1)-happy P ′

equivalent to P efficiently?

Thm. The intrinsic Delaunay Triangulation P ′ of P is O(1)
happy (and equivalent to P ).

OPENGiven P , can we compute an O(1)-happy P ′

equivalent to P efficiently? OPEN

Thm. Complexity of SPM(s) in a h-happy P is O(n2h), and
can be computed in O(λ4(n2h) log2(nh)) time.

OPENCan we compute SPM(s) in O(nmh) time? OPEN

Thank You!

F1 F2

F3 F4


