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Q: Can we efficiently compute a shortest path π(s, t) in P?

s

t

computing π(s, t) in/on a

simple polygon

polygonal domain

polyhedron

convex polyhedron

O(n)

O(n + k log k)

O(n log n)

O(n2)

n = #verticesn = #vertices

k = #holes

[GHLST, 1987]

[Wang, 2021]

[Chen & Han, 1996]

[Schreiber, 2007]
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Lem. We can compute P ’ equivalent to F in O(n + log h)
time.
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