Improved Dynamic

Geodesic
Nearest Neighbor Searching

N

a
Simple Polygon

Lars Arge
Pankaj Agarwal

Frank Staals

The Problem

Given: P: simple polygon

The Problem

Given: P: simple polygon, S: dynamic set of point sites inside P

Problem: store S s.t. we can

The Problem

Given: P: simple polygon, S: dynamic set of point sites inside P

Problem: store S s.t. we can
Insert a site,

The Problem

Given: P: simple polygon, S: dynamic set of point sites inside P

Problem: store S s.t. we can
Insert a site,
delete a site,

The Problem

Given: P: simple polygon, S: dynamic set of point sites inside P

Problem: store S s.t. we can
Insert a site,
delete a site,
find the site s € S closest to a query point g

The Problem

Given: P: simple polygon, S: dynamic set of point sites inside P

Problem: store S s.t. we can
Insert a site,
delete a site,
find the site s € S closest to a query point g

we measure the geodesic distance between s and g

Euclidean Dynamic NN Searching

Given: S: dynamic set of n point sites in R?

Problem: store S s.t. we can
Insert a site,
delete a site,
find the site s € S closest to a query point g

Euclidean Dynamic NN Searching

Given: S: dynamic set of n point sites in R?

Problem: store S s.t. we can ;
insert a site, O(log” n) o
delete a site, Ollog’ n) [@mortize
find the site s € S closest to a query point g O(log® n)

[Chan, JACM 0], [Kaplan et al., SODA "17]

What's the Problem?

Obs: Nearest Neighbor Searching is a decomposable search problem

split S into O(y/n) groups of size O(y/n),

build Voronoi diagram for each
query O(v/nlog n)
update O(\/ﬁlog n)

n = max #sites in S
m = complexity P

What's the Problem?

Obs: Nearest Neighbor Searching is a decomposable search problem

split S into O(y/n) groups of size O(y/n),
build geodesic Voronoi diagram for each

query O(v/nlog(n+ m))
update O((/n+ m)log(n+ m))

Problem: geodesic Voronoi Diagram has size ©(n+ m)

n = max #sites in S
m = complexity P

What's the Problem?

Obs: Nearest Neighbor Searching is a decomposable search problem

split S into O(y/n) groups of size O(y/n),
build geodesic Voronoi diagram for each

query O(v/nlog(n+ m))
update O(v/nlognlog?m) [Oh & Ahn, SoCG "17]

Problem: geodesic Voronoi Diagram has size ©(n+ m)

n = max #sites in S
m = complexity P

Results

Given: P: simple polygon, S: dynamic set of point sites inside P

The data structure supports:

. 7
Insert O(|089(” + m)) expected, amortized
delete O(log™(n + m))
query O(|0g4(n + m))
n = max #sitesin S

m = complexity P

expected space: O(m+ nlog> nlog m)

Results

P: simple polygon, S: dynamic set of point sites inside P
sequence of updates

The data structure supports:

Given:

Insert O(Iog4(n +m)) amortized
delete Ollog*(n + m))
query O(log*(n+ m))
n = max #sites in S

m = complexity P

space: O(m+ nlog nlog m)

Results

Given: P: simple polygon, S: dynamic set of point sites inside P

The data structure supports:
Insert O(Iog4(n + m)) amortized

query O(Iog4(n + m))
n = max #sitesin S

m = complexity P

space: O(m+ nlog m)

How?

Strategy in the Kaplan et al. approach:

1. Consider lower envelope of distance functions F

How?

Strategy in the Kaplan et al. approach:

1. Consider lower envelope of distance functions F

How?

Strategy in the Kaplan et al. approach:

1. Consider lower envelope of distance functions F
2. Design algorithm A to compute a k-shallow cutting A(F)

How?

Strategy in the Kaplan et al. approach:
1. Consider lower envelope of distance functions F
2. Design algorithm A to compute a k-shallow cutting Ag(F)
Ai(F) = collection of few disjoint prisms

each prism has O(1) complexity
intersects O(k) functions

How?

Strategy in the Kaplan et al. approach:
1. Consider lower envelope of distance functions F
2. Design algorithm A to compute a k-shallow cutting A(F)
Ak(F) = collection of few disjoint prisms

each prism has O(1) complexity
intersects O(k) functions

How?

Strategy in the Kaplan et al. approach:
1. Consider lower envelope of distance functions F
2. Design algorithm A to compute a k-shallow cutting A(F)
Ak(F) = collection of few disjoint prisms
each prism has O(1) complexity

intersects O(k) functions
that together cover the <k-level L~ (F)

How?

Strategy in the Kaplan et al. approach:
1. Consider lower envelope of distance functions F
2. Design algorithm A to compute a k-shallow cutting A(F)
Ak(F) = collection of few (O(n/k)log® n) disjoint prisms
each prism has O(1) complexity

intersects O(k) functions
that together cover the <k-level L~ (F)

How?

Strategy in the Kaplan et al. approach:
1. Consider lower envelope of distance functions F
2. Design algorithm A to compute a k-shallow cutting A(F)
Ak(F) = collection of few (O(n/k)log® n) disjoint prisms
each prism has O(1) complexity

intersects O(k) functions
that together cover the <k-level L~ (F)

3. Use A to construct a data structure.

How?

1. Consider lower envelope of distance functions F
2. Design algorithm A to compute a k-shallow cutting A(F)

Ak(F) = collection of few (O(n/k)log® n) disjoint prisms
each prism has O(1) complexity

intersects O(k) functions
that together cover the <k-level L~ (F)

3. Use A to construct a data structure.

How?

1. Consider lower envelope of distance functions F
2. Design algorithm A to compute a k-shallow cutting A(F)

Ak(F) = collection of few (O(n/k)log® n) disjoint prisms

each prism inaenilidineaitonim
intersects O(k) functions
that together cover the <k-level L~ (F)

3. Use A to construct a data structure.

Constructing a Shallow Cutting

1. Take a random sample R C F

2. Construct the t-level L/(R)

Constructing a Shallow Cutting

1. Take a random sample R C F

2. Construct the t-level L/(R)
3. Prove that L(R) lies between L,(F) and Lyq.-)(F)

and that it has low complexity

Lia+e)(F)

Constructing a Shallow Cutting

1. Take a random sample R C F

2. Construct the t-level L/(R)
3. Prove that L¢(R) lies between L.(F) and Ly(.-)(F)

and that it has low complexity

4. Turn L¢(R) into a k-shallow cutting Ax(F)

Constructing a Shallow Cutting

1. Take a random sample R C F

2. Construct the t-level L/(R)
3. Prove that L¢(R) lies between L.(F) and Ly(.-)(F)

and that it has low complexity

4. Turn L¢(R) into a k-shallow cutting Ax(F)

Constructing a Shallow Cutting

1. Take a random sample R C F

2. Construct the t-level L/(R)
3. Prove that L¢(R) lies between L.(F) and Ly(.-)(F)

and that it has low complexity

4. Turn L¢(R) into a k-shallow cutting Ax(F)

Constructing a Shallow Cutting

1. Take a random sample R C F
2. Construct the t-level L/(R)
3. Prove that L¢(R) lies between L.(F) and Ly(.-)(F)

and that it has low complexity

4. Turn L¢(R) into a k-shallow cutting Ax(F)
5. For each V € Ai(F), compute conflict list v

Constructing a Shallow Cutting

Obs. L.(F)~ k™ order Voronoi Diagram V,(5)

Representing a Level

Thm. Geodesic Vi(S) has O(kn) vertices of degree 1 or 3
O(km) vertices of degree 2

[Liu et al., SODA "3]

Representing a Level

Thm. Geodesic Vi(S) has O(kn) vertices of degree 1 or 3

O(km) vertices of degree 2 [Liu et al., SODA "3]

Main Idea: Store locations of only degree 1 or 3 vertices + topology Vi(S)

Representing a Level

Thm. Geodesic Vi(S) has O(kn) vertices of degree 1 or 3

O(km) vertices of degree 2 [Liu et al., SODA "3]

Main Idea: Store locations of only degree 1 or 3 vertices + topology Vi(S)

Representing a Level

Thm. Vi(S) can be represented using O(kn) space, and s.t.
all regions are pseudo trapezoids

Representing a Level

Thm. Vi(S) can be represented using O(kn) space, and s.t.
all regions are pseudo trapezoids

Representing a Level

Thm. Vi(S) can be represented using O(kn) space, and s.t.
all regions are pseudo trapezoids

Vi(S) can be computed in O(k?nlog>(n+ m)) time

Representing a Level

Thm. Vi(S) can be represented using O(kn) space, and s.t.
all regions are pseudo trapezoids

Vi(S) can be computed in O(k?nlog>(n+ m)) time
finding the region V > g takes O(log(n + m)) time.

Representing a Level

Thm. Ly (F) can be represented using O(kn) space

L« (F) can be computed in O(k?nlog>(n+ m)) time
finding the region V > g takes O(log(n + m)) time.

Representing a Level

Thm. Ly (F) can be represented using O(kn) space

L« (F) can be computed in O(k?nlog>(n+ m)) time
finding the region V > g takes O(log(n + m)) time.

Representing a Level

Thm. Ly (F) can be represented using O(kn) space

L« (F) can be computed in O(k?nlog>(n+ m)) time
finding the region V > g takes O(log(n + m)) time.

Representing a Shallow Cutting

Representing a Shallow Cutting

Problem 1: How to prove that a pseudo prism V intersects O(k) functions?

Representing a Shallow Cutting

Problem 1: How to prove that a pseudo prism V intersects O(k) functions?

Problem 2: How to compute Fy/?

Splitting P

Main idea: Restrict S to Py and domain to P..

Splitting P

Main idea: Restrict S to Py and domain to P..

Splitting P
Main idea: Restrict S to Py and domain to P..

Lemma. t conflicts with V <= t conflicts with a corner of V

Splitting P
Main idea: Restrict S to Py and domain to P..

Lemma. t conflicts with V <= t conflicts with a corner of V

Splitting P
Main idea: Restrict S to Py and domain to P..

Lemma. t conflicts with V <= t conflicts with a corner of V

Splitting P
Main idea: Restrict S to Py and domain to P..
Thm. A(F) is a k-shallow cutting of size O((n/k) Iog2 n)

Splitting P
Main idea: Restrict S to Py and domain to P..
Thm. A(F) is a k-shallow cutting of size O((n/k) Iog2 n)

A(F) can be computed in O((n/k) log”(n+ m) + nlog®*(n+ m)) time

Splitting P

Main idea: Restrict S to Py and domain to P..

Lemma. 3 dynamic DS to maintain SN Py s.t.
NN-queries with g € P;: O(Iog3(n+ m))
updates: Olog®(n + m))

Results

Given: P: simple polygon, S: dynamic set of point sites inside P

The data structure supports:

. 7
Insert O(|089(” + m)) expected, amortized
delete O(log™(n + m))
query O(|0g4(n + m))
n = max #sitesin S

m = complexity P

expected space: O(m+ nlog> nlog m)

Done?

Done?

Question: can we shave some logs?

Done?

Question: can we shave some logs?

Question: Is there a Ai(F) on the full polygon P?

Done?

Question: can we shave some logs?

Question: Is there a Ai(F) on the full polygon P?

Question: How about polygons with holes?

Done”?

Question: can we shave some logs?

Question: s there a Ai(F) on the full polygon P?

Question: How about polygons with holes? or terrains?

Done?

Question: can we shave some logs?

Question: Is there a Ai(F) on the full polygon P?

Question: How about polygons with holes? or terrains?

Thank You!

The Offline Data Structure

The Offline Data Structure

Obs. Let S, be k sites in Py.
The geodesic VD VD(Sy) in P, is a forest with O(k) degree 1 and 3 vertices

The Offline Data Structure

Obs. Let S, be k sites in Py.
The geodesic VD VD(Sy) in P, is a forest with O(k) degree 1 and 3 vertices

Main idea: Compute the locations of only those vertices and the topology of VD(S)

The Offline Data Structure

Obs. Let S, be k sites in Py.
The geodesic VD VD(Sy) in P, is a forest with O(k) degree 1 and 3 vertices

Main idea: Compute the locations of only those vertices and the topology of VD(S)

The Offline Data Structure

Obs. Let S, be k sites in Py.
The geodesic VD VD(Sy) in P, is a forest with O(k) degree 1 and 3 vertices

Main idea: Compute the locations of only those vertices and the topology of VD(S)

— takes O(k log® m) time

The Offline Data Structure

Obs. Let S, be k sites in Py.
The geodesic VD VD(Sy) in P, is a forest with O(k) degree 1 and 3 vertices

Main idea: Compute the locations of only those vertices and the topology of VD(S)
— takes O(k log? m) time

we can find s € 5 closest to g € P, in O(log klog m) time.

The Offline Data Structure

What about 5, = SN P,?

The Offline Data Structure

What about S, = SN P,? Recursively partition P,

The Offline Data Structure

What about S, = SN P,? Recursively partition P,

What if g € P,?

The Offline Data Structure

What about S, = SN P,? Recursively partition P,

What if g € P,? Symmetric:
Use VD(S,) to find closest site in S,
Recursively partition P, to find closest site in Sy

The Offline Data Structure

How to deal with updates?

The Offline Data Structure

How to deal with updates? Map each s € 5y to a time interval Is = [tinsert s tdelete)

The Offline Data Structure

How to deal with updates? Map each s € 5y to a time interval Is = [tinsert s tdelete)

Build VD(S,) for each u

The Offline Data Structure

How to deal with updates? Map each s € 5y to a time interval Is = [tinsert s tdelete)

Build VD(S,) for each u

At query time t, select O(log n) nodes u,
query each VD(S,) .

The Offline Data Structure

How to deal with updates? Map each s € 5y to a time interval Is = [tinsert s tdelete)

Build VD(S,) for each u

At query time t, select O(log n) nodes u,
query each VD(S,) .

= O(Iog4(n+ m)) time amortized updates and queries

