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Given: P: simple polygon, S: dynamic set of point sites inside P

Problem: store S s.t. we can
Insert a site,
delete a site,
find the site s € S closest to a query point g

we measure the geodesic distance between s and g
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Euclidean Dynamic NN Searching

Given: S: dynamic set of n point sites in R?

Problem: store S s.t. we can ;
insert a site, O(log” n) o
delete a site, Ollog’ n) [ @mortize
find the site s € S closest to a query point g O(log® n)

[Chan, JACM 0], [Kaplan et al., SODA "17]
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What's the Problem?

Obs: Nearest Neighbor Searching is a decomposable search problem

split S into O(y/n) groups of size O(y/n),
build geodesic Voronoi diagram for each

query O(v/nlog(n+ m))
update O(v/nlognlog?m)  [Oh & Ahn, SoCG "17]

Problem: geodesic Voronoi Diagram has size ©(n+ m)

n = max #sites in S
m = complexity P



Results

Given: P: simple polygon, S: dynamic set of point sites inside P

The data structure supports:

. 7
Insert O(|089(” + m)) expected, amortized
delete O(log™(n + m))
query O(|0g4(n + m))
n = max #sitesin S

m = complexity P

expected space: O(m+ nlog> nlog m)
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Results

Given: P: simple polygon, S: dynamic set of point sites inside P

The data structure supports:
Insert O(Iog4(n + m)) amortized

query O(Iog4(n + m))
n = max #sitesin S

m = complexity P

space: O(m+ nlog m)
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How?

1. Consider lower envelope of distance functions F
2. Design algorithm A to compute a k-shallow cutting A(F)

Ak(F) = collection of few (O(n/k)log® n) disjoint prisms

each prism inaenilidineaitonim
intersects O(k) functions
that together cover the <k-level L~ (F)

3. Use A to construct a data structure.
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Constructing a Shallow Cutting

1. Take a random sample R C F
2. Construct the t-level L/(R)
3. Prove that L¢(R) lies between L.(F) and Ly(.-)(F)

and that it has low complexity

4. Turn L¢(R) into a k-shallow cutting Ax(F)
5. For each V € Ai(F), compute conflict list v




Constructing a Shallow Cutting

Obs. L.(F)~ k™ order Voronoi Diagram V,(5)
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Representing a Shallow Cutting

Problem 1: How to prove that a pseudo prism V intersects O(k) functions?

Problem 2: How to compute Fy/?
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Splitting P
Main idea: Restrict S to Py and domain to P..

Lemma. t conflicts with V <= t conflicts with a corner of V
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Splitting P
Main idea: Restrict S to Py and domain to P..
Thm. A(F) is a k-shallow cutting of size O((n/k) Iog2 n)

A(F) can be computed in O((n/k) log”(n+ m) + nlog®*(n+ m)) time




Splitting P

Main idea: Restrict S to Py and domain to P..

Lemma. 3 dynamic DS to maintain SN Py s.t.
NN-queries with g € P;: O(Iog3(n+ m))
updates: Olog®(n + m))




Results

Given: P: simple polygon, S: dynamic set of point sites inside P

The data structure supports:

. 7
Insert O(|089(” + m)) expected, amortized
delete O(log™(n + m))
query O(|0g4(n + m))
n = max #sitesin S

m = complexity P

expected space: O(m+ nlog> nlog m)
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Done?

Question: can we shave some logs?

Question: Is there a Ai(F) on the full polygon P?

Question: How about polygons with holes? or terrains?

Thank You!
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The Offline Data Structure

Obs. Let S, be k sites in Py.
The geodesic VD VD(Sy) in P, is a forest with O(k) degree 1 and 3 vertices

Main idea: Compute the locations of only those vertices and the topology of VD(S)
— takes O(k log? m) time

we can find s € 5 closest to g € P, in O(log klog m) time.
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The Offline Data Structure

What about S, = SN P,? Recursively partition P,

What if g € P,? Symmetric:
Use VD(S,) to find closest site in S,
Recursively partition P, to find closest site in Sy
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The Offline Data Structure

How to deal with updates? Map each s € 5y to a time interval Is = [tinsert s tdelete )

Build VD(S,) for each u

At query time t, select O(log n) nodes u,
query each VD(S,) .

= O(Iog4(n+ m)) time amortized updates and queries




