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Euclidean Dynamic NN Searching
Given: S: dynamic set of n point sites in R2

Problem: store S s.t. we can

delete a site,
insert a site,

�nd the site s ∈ S closest to a query point q

O(log3 n)
O(log5 n)
O(log2 n)

amortized

[Chan, JACM ’10], [Kaplan et al., SODA ’17]
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split S into O(
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n) groups of size O(
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build geodesic Voronoi diagram for each

query

update

O(
√
n log(n +m))

Problem: geodesic Voronoi Diagram has size Θ(n +m)

O(
√
n log n log2m) [Oh & Ahn, SoCG ’17]

n = max #sites in S
m = complexity P
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Given: P: simple polygon, S: dynamic set of point sites inside P

insert

query

Results

O(log4(n +m))
n = max #sites in S

The data structure supports:

m = complexity Pspace: O(m + n logm)

amortizedO(log4(n +m))
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each prism has O(1) complexity

How?

3. Use A to construct a data structure.

1. Consider lower envelope of distance functions F

= collection of few (O(n/k) logc n) disjoint prisms
2. Design algorithm A to compute a k-shallow cutting Λk (F )
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Constructing a Shallow Cutting
1. Take a random sample R ⊆ F

2. Construct the t-level Lt(R)
3. Prove that Lt(R) lies between Lk (F ) and Lk(1+ε)(F )

Lt(R)

and that it has low complexity

4. Turn Lt(R) into a k-shallow cutting Λk (F )
5. For each ∇ ∈ Λk (F ), compute con�ict list F∇



Constructing a Shallow Cutting

Lk (F )≈ kth order Voronoi Diagram Vk (S)Obs.
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Representing a Level

�nding the region ∇ 3 q takes O(log(n +m)) time.

Lk(F) can be represented using O(kn) space

Lk(F) can be computed in O(k2n log3(n +m)) time

Thm.
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Representing a Shallow Cutting
Problem 1: How to prove that a pseudo prism ∇ intersects O(k) functions?

Problem 2: How to compute F∇?
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Splitting P
Main idea: Restrict S to P` and domain to Pr .

Lemma.

s∇

t con�icts with ∇ ⇐⇒ t con�icts with a corner of ∇

t

=⇒ |F∇| = O(k)

∇

t

c
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Splitting P
Main idea: Restrict S to P` and domain to Pr .

PrP`

Λ(F ) is a k-shallow cutting of size O((n/k) log2 n)

Λ(F ) can be computed in O((n/k) log5(n +m) + n log4(n +m)) time

Thm.



Splitting P
Main idea: Restrict S to P` and domain to Pr .

q

P`

∃ dynamic DS to maintain S ∩ P` s.t.Lemma.
NN-queries with q ∈ Pr :

Pr

updates:
O(log3(n +m))
O(log8(n +m))
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Given: P: simple polygon, S: dynamic set of point sites inside P

delete
insert

query

Results

O(log4(n +m))
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The data structure supports:

m = complexity P
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How about polygons with holes?

Done?

or terrains?

q
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How about polygons with holes?

Done?

or terrains?

Thank You!

Question: Is there a Λk (F ) on the full polygon P?

Question: can we shave some logs?

Question:



The O�ine Data Structure

P` Pr



Obs.
The O�ine Data Structure

Let S` be k sites in P`.
The geodesic VD VD(S`) in Pr is a forest with O(k) degree 1 and 3 vertices

P` Pr



Obs.
The O�ine Data Structure

Main idea:

Let S` be k sites in P`.
The geodesic VD VD(S`) in Pr is a forest with O(k) degree 1 and 3 vertices

P` Pr

Compute the locations of only those vertices and the topology of VD(S)



Obs.
The O�ine Data Structure

Main idea:

Let S` be k sites in P`.
The geodesic VD VD(S`) in Pr is a forest with O(k) degree 1 and 3 vertices

P` Pr

Compute the locations of only those vertices and the topology of VD(S)



Obs.
The O�ine Data Structure

Main idea:

Let S` be k sites in P`.
The geodesic VD VD(S`) in Pr is a forest with O(k) degree 1 and 3 vertices

P` Pr

Compute the locations of only those vertices and the topology of VD(S)

=⇒ takes O(k log2m) time



Obs.
The O�ine Data Structure

Main idea:

Let S` be k sites in P`.
The geodesic VD VD(S`) in Pr is a forest with O(k) degree 1 and 3 vertices

P` Pr

Compute the locations of only those vertices and the topology of VD(S)

=⇒ takes O(k log2m) time

we can �nd s ∈ S` closest to q ∈ Pr in O(log k logm) time.

qs
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The O�ine Data Structure

P` Pr

What about Sr = S ∩ Pr? Recursively partition Pr

What if q ∈ P`?

q

Symmetric:

The O�ine Data Structure

Recursively partition P` to �nd closest site in S`
Use VD(Sr ) to �nd closest site in Sr
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The O�ine Data Structure

P` Pr

How to deal with updates? Map each s ∈ S` to a time interval Is = [tinsert s, tdelete s]

Build VD(Su) for each uu
At query time t, select O(log n) nodes u,
query each VD(Su) .

t =⇒ O(log4(n +m)) time amortized updates and queries


